Glossaire

« Utiliser le bon mot, la bonne notion, le bon concept, avec la définition la plus couramment acceptée, ou mieux avec la définition la mieux acceptée et comprise relève parfois de l’exploit, … »
                                                     
 Patrick Triplet.

> Par cette citation, je souhaite rendre un vibrant hommage au travail de Titan réalisé sur plus de dix ans par ce biologiste, docteur en écologie dont l’ouvrage Dictionnaire encyclopédique de la diversité biologique et de la conservation de la nature constitue la source de très nombreuses définitions présentes dans ce glossaire. Utiliser un langage dont les mots recouvrent des concepts clairement définis permet à chacun d’aborder et de comprendre des domaines qui ne sont pas forcément de sa compétence.

> Ce glossaire qui regroupe plus de 6 000 définitions accompagnées de leur traduction anglaise est là pour vous y aider. Il couvre les domaines complémentaires que sont la Géographie, l’Écologie et l’Économie, sans oublier de faire un petit détour par la Finance qui régit dans l’ombre une bonne part de notre existence.

> Par lui-même, de définition en définition, ce glossaire vous invite à explorer l’univers riche de la conservation des milieux naturels, d’en comprendre les mécanismes et les enjeux.

À toutes et tous, nous souhaitons : “Excellente lecture et bon voyage”.

Glossaire

Rechercher par terme du glossaire

Glossaires

Terme Définition
Ouvrage hydraulique

♦ Construction qui utilise l’énergie statique ou dynamique de l’eau entraînant une perturbation du fonctionnement naturel des cours d’eau. Les impacts d’un ouvrage hydraulique sont  :

♦ Équivalent étranger : Hydraulic structure.

Ovipare

♦ Espèce animale dont les femelles pondent des œufs qui éclosent après leur sortie des voies génitales, au terme d'une période de développement embryonnaire.
♦ Équivalent étranger : Oviparous.

Oviparité

♦ Mode de reproduction fondé sur la ponte d’oeufs.
♦ Équivalent étranger : Oviparity.

Ovovivipare

♦ Espèce animale dont les œufs éclosent à l'intérieur du corps maternel. La femelle donne naissance à des jeunes ou à des larves déjà formées.
♦ Équivalent étranger : Ovoviviparous.

Oxique

♦ Pourvu d'oxygène.
♦ Antonyme : Anoxique.
♦ Équivalent étranger : Oxic.

Oxyde nitreux

♦ L'un des six gaz à effet de serre dont il est prévu de réduire les émissions au titre du Protocole de Kyoto.
L'agriculture (gestion des sols et des effluents d'élevage) est la principale source anthropique d'oxyde nitreux, même si l'épuration des eaux usées, la combustion des combustibles fossiles et les procédés de l'industrie chimique jouent également un rôle important à cet égard.
L'oxyde nitreux est aussi émis naturellement par toute une série de sources biologiques dans les sols et dans l'eau, et notamment par l'action microbienne dans les forêts tropicales humides.
♦ Équivalent étranger : Nitrous oxide.

Oxygène dissous

♦ La teneur en oxygène moléculaire (O2) dissous est un paramètre important qui gouverne la majorité des processus biologiques des écosystèmes aquatiques. La concentration en O2 dissous est la résultante des facteurs physiques, chimiques et biologiques suivants : 

  • Échanges à l'interface air-océan 
  • Diffusion et mélange au sein de la masse d'eau
  • Utilisation dans les réactions d'oxydation chimique (naturelles ou anthropiques)
  • Utilisation par les organismes aquatiques pour la respiration (ce qui inclut au sens large la dégradation bactérienne des matières organiques) et pour la nitrification
  • Production in situ par la photosynthèse.

> Le pourcentage d'oxygène par rapport à la saturation doit également être pris en compte. La dissolution de l'oxygène dans l'eau est en effet régie par des lois physiques et dépend de la pression atmosphérique, de la pression de vapeur saturante, de la température de l'eau, de la salinité. Pour une valeur donnée de chacun de ces paramètres, la solubilité maximale de l'oxygène dans l'eau est appelée saturation. Tous les processus exclusivement mécaniques d'échange eau-atmosphère, tel que l'effet du vent ou de la houle, le ruissellement et le bullage, tendent à porter l'eau à son niveau de saturation en oxygène. Les états de sous-saturation et sursaturation ne peuvent donc être induits que par les phénomènes physico-chimiques, chimiques et biologiques sus-cités.

> La solubilité de l'O2 dans l'eau diminue en fonction de la salinité et de la température. À 20°C, la solubilité de l'oxygène est de 9 mg/L dans l'eau douce et de 7,4 mg/L dans de l'eau salée à 35 °/oo. Ce sont les processus biologiques qui ont généralement une influence prépondérante sur les concentrations en oxygène dans l'eau. Ainsi, dans les estuaires, des zones d'accumulation de détritus carbonés en décomposition peuvent devenir totalement anoxiques ; la nitrification de l'azote ammoniacal est également une source importante de déficits en oxygène. Par ailleurs, en zone eutrophe, des développements importants de phytoplancton ou de macroalgues peuvent engendrer des sursaturations diurnes atteignant 150 voire 200 %.

> L’O2 dissous est l’élément de base pour la survie de la quasi-totalité des organismes vivants (à l’exception des bactéries anaérobiques). Une perturbation de ce paramètre, telle qu’une hypoxie ou en cas extrême, une anoxie, engendre de multiples conséquences sur les espèces vivantes : barrière à la migration, fuite des habitats, modifications physiologiques ou encore mortalité. L’une ou l’autre de ces conséquences sera fonction de la durée et de l’importance de la déficience en oxygène dissous et des besoins et tolérances des différentes espèces.
L’O2 dissous dans l’eau provient des échanges air-eau et résulte également de processus de photosynthèse (phytoplancton et macrophytes). L’oxygénation des eaux est également régulée par les conditions physiques et physico-chimiques du milieu : une hausse de la température ou de la salinité, un hydrodynamisme insuffisant sont autant de facteurs limitant cette oxygénation. L’O2 dissous est par ailleurs consommé par les organismes vivants d’une part (respiration), lors de la dégradation de la fraction organique présente et l’oxydation de substances chimiques réduites d’autre part. Ces deux derniers processus sont naturels. En revanche, depuis plusieurs décennies, les activités anthropiques ont augmenté de manière accrue les apports nutritifs (rejets industriels, urbains ou agricoles) engendrant des déficits en oxygène parfois très importants (eutrophisation des eaux et dégradation de la matière organique produite, oxydation directe de l’ammonium).
Dans les zones les plus turbides, les taux en O2 dissous sont naturellement plus faibles du fait de la turbidité qui limite la pénétration de la lumière et donc la photosynthèse, mais également en lien avec le rôle autoépurateur du bouchon vaseux. La teneur en O2 dissous des eaux estuariennes est très dépendante de la température de l’eau, de sa salinité (à moindre échelle), mais aussi de l’hydrodynamisme des masses d’eau. Propagation de la marée, et présence de débits fluviaux soutenus sont à l’origine d’une agitation des eaux qui favorise leur ré-oxygénation. Inversement, un faible hydrodynamisme engendre une moindre agitation des eaux et une mauvaise ré-aération. De plus, dans ces conditions, les temps de résidence des eaux dans l’estuaire s’allongent et le bouchon vaseux stagne lui aussi plus longuement dans ce système. Il y a donc de faibles renouvellements et des oscillations limitées des masses d’eaux, associées à la présence du bouchon vaseux. Dans celui-ci, d’importants processus bactériens de dégradation de matière organique biodégradable se produisent et sont à l’origine d’une importante consommation en oxygène dissous, non compensée par la production d’oxygène due à une éventuelle photosynthèse. En effet, la forte turbidité ne permet la pénétration de la lumière que dans les premiers centimètres de la colonne d’eau.
Enfin, la présence de zones urbaines et industrielles de grande ampleur, qui constituent des sources probables d’apports de matériels organiques très dégradables, a elle aussi un rôle majeur sur la désoxygénation possible des eaux estuariennes.

> Au niveau de la zone de turbidité maximale, deux processus réduisent la quantité d’oxygène dans l’eau :

  • La fraction organique biodégradable associée aux grandes quantités de matières en suspension fait l’objet d’une dégradation avec consommation d’oxygène dissous, phénomène amplifié s’il y a présence de rejets d’origine anthropique, le plus souvent très riches en matières organiques dégradables
  • La forte turbidité limite en surface la pénétration de la lumière ne permettant pas de production primaire et donc de production d’oxygène dissous par photosynthèse, susceptible de compenser la consommation. Ainsi, lorsque la turbidité est maximale, la concentration en oxygène est minimale.

> Le niveau d’O2 dissous varie principalement selon les facteurs suivants :

  • Le degré de turbulence. Un brassage important augmente le contact eau-air et par conséquent le taux d’O2 dissous
  • La température de l’eau, une eau fraîche contenant plus d’oxygène dissous qu’une eau chaude
  • La consommation par les animaux, les plantes et de façon plus importante, par les bactéries qui dégradent la matière organique diminue le taux d'oxygène dissous. Plus il y a de matière organique dans une eau, plus la demande en O2 est élevée. Lors d’une forte pluie, il peut y avoir des apports importants de matière inorganique et/ou organique dans l’eau, et le taux d’oxygène dissous résultant peut être inférieur à la normale durant quelques jours ou quelques semaines. Les autres sources de matière organique sont par exemple, les eaux usées et les eaux de ruissellement. L’effet de ces effluents sur l’oxygène du cours d’eau peut être établi en mesurant la teneur en oxygène dissous avant et après le rejet
  • La photosynthèse des plantes et des algues peut faire varier les taux en oxygène dissous sur une période de 24 heures. Le jour, les plantes produisent de l’oxygène (le maximum est atteint au début de l’après-midi où le pourcentage de saturation peut excéder 100 %). La nuit, elles consomment de l’oxygène lors de leur respiration (taux minimum juste avant le lever du soleil).

Le pourcentage (%) de saturation est une mesure permettant de comparer plus facilement les données d'oxygène dissous entre différents sites ou à différentes dates. Pour calculer le pourcentage de saturation en oxygène, on compare la valeur mesurée à la valeur maximum d’O2 dissous que peut contenir l’eau à la température observée. Ces valeurs maximales (C°max) sont fournies dans le tableau ci-dessous. Elles correspondent à la quantité maximum d’oxygène qui peut être dissous dans un litre d’eau, pour des températures données.

% Saturation = (Valeur mesurée d’O2 dissous dans l’eau / C°maxO2) x 100

maxO2 selon la température

───────────────────────────
  Temp.    Oxygène         Temp.    Oxygène
                 dissous                         dissous
     °C           mg/L              °C           mg/L
───────────────────────────
                14,60               23          8,56
     1           14,19               24          8,40
     2           13,81               25          8,24
     3           13,44               26          8,09
     4           13,09               27          7,95
     5           12,75               28          7,81
     6           12,43               29          7,67
     7           12,12              30           7,54
     8           11,83              31           7,41
     9           11,55              32           7,28
    10          11,27              33           7,16
    11          11,01              34           7,05
    12          10,76              35          6,93
    13          10,52              36          6,82
    14          10,29              37          6,71
    15          10.07              38          6,61
    16           9,85               39          6,51
    17           9,65               40          6,41
    18           9,45               41          6,31
    19           9,26               42          6,22
    20           9,07               43          6,13
    21           8,90               44          6,04
    22           8,72               45          5,95
──────────────────────────

> Concentrations d'oxygène dissous généralement observées dans les cours d’eau :

  • Pour les mg/L :
    - 0 à 2 mg/L >> Taux d'oxygène insuffisant pour la survie de la plupart des organismes
    - 2 à 4 mg/L >> Seules certaines espèces de poissons et d'insectes peuvent survivre
    - 4 à 7 mg/L >> Correct pour la plupart des organismes des étangs Acceptable pour les espèces de poissons d'eau chaude Faible pour les espèces de poissons d'eau froide
    - 7 à 11 mg/L >> Idéal pour la plupart des poissons d'eau courante froide.
  • Pour le pourcentage de saturation :
    - Moins de 60 % >> Faible
    - 60 à 79 % >> Acceptable pour la plupart des organismes d'eau courante
    - 80 à 125 % >> Excellent pour la plupart des organismes d'eau courante
    - 125 % ou plus >> Trop élevé ; peut être dangereux pour les poissons. > Généralement, les valeurs observées en eau courante devraient être supérieures à 80% de saturation le jour et à 70% la nuit. Dans un lac ou un estuaire, des valeurs de 70% de saturation sont recommandées tandis qu’en eau salée, des valeurs de 80% sont acceptables. L'oxygène dissous est crucial pour de nombreux processus chimiques et biologiques qui se produisent dans le cours d'eau tels que : 
  • La respiration • La décomposition • La conversion d'éléments nutritifs en formes utiles
  • La transformation de composés chimiques en formes moins dangereuses • Ainsi que pour plusieurs autres fonctions vitales.

Équivalent étranger : Dissolved oxygen.

Oxyphile

♦ Plante qui pousse bien dans les sols acides. Organisme qui vit dans des eaux riches en oxygène.
♦ Équivalent étranger : Oxyphilic.

Ozone

♦ Forme triatomique de l'oxygène (O3), l'ozone est un constituant gazeux de l'atmosphère. Dans la troposphère, il se forme naturellement, mais aussi par suite de réactions photochimiques faisant intervenir des gaz dus à l'activité humaine (smog).
L'ozone troposphérique agit comme un gaz à effet de serre. Dans la stratosphère, l'ozone résulte de l'interaction du rayonnement ultraviolet solaire et de l'oxygène moléculaire (O2). L'ozone stratosphérique joue un rôle décisif dans l'équilibre radiatif stratosphérique. C'est dans la couche d'ozone que sa concentration est la plus élevée.
♦ Équivalent étranger : Ozone.