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Abstract

The great ape families are the species most closely related to
our own, comprising chimpanzees, bonobos, gorillas, and
orangutans. They live exclusively in tropical rainforests in
Central Africa and the islands of Southeast Asia. Due to their
close evolutionary relationship with humans, great apes
share many cognitive, physiological, and morphological
similarities with humans. The members of the great ape fam-
ily make obvious models to facilitate the further understand-
ing about humans’ biology and history. This review will
discuss how the recent addition of genome-wide data from
great apes has furthered humans’ understanding of these spe-
cies and humanity, especially in the realm of evolutionary
genetics.
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Introduction

I t has long been hypothesized that humans and the great
apes share a recent common ancestry (Huxley 1863; Dar-
win 1871). This result has been confirmed by many mo-

lecular studies over the past several decades (Sibley and
Ahlquist 1987; Goodman 1996; Satta et al. 2000; Chen and
Li 2001). It is now known that common chimpanzees (Pan
troglodytes) and bonobos (Pan paniscus) are our closest liv-
ing relatives, followed by gorillas and orangutans (Figure 1).
The sequence divergence at orthologous sites between hu-
mans and chimpanzees/bonobos is just 1.2% (Chimpanzee
Sequencing and Analysis Consortium 2005; Prufer et al.
2012), which is much less than the divergence between two
random fruit flies (Drosophila simulans) of the same species
(Begun et al. 2007). Great apes are studied by geneticists for
a wide variety of reasons, including intrinsic biological inter-
est, interest in the horizontal transfer of pathogens such as
HIV-1 (Keele et al. 2006), implications for conservation

biology, and interest in recently evolved human-specific
traits such as bipedality and large, complex brains. With as-
sembled genome sequences now available from four differ-
ent great ape species (Chimpanzee Sequencing and Analysis
Consortium 2005; Locke et al. 2011; Prufer et al. 2012;
Scally et al. 2012), as well as 100 additional genomes
available for population genomic studies (Locke et al. 2011;
Auton et al. 2012; Prado-Martinez et al. 2013), there is now
an unprecedented ability to study the evolution of human-
ity’s closest relatives. This review highlights how recent
comparative studies have enhanced the knowledge of human
genetics and human evolution. A comprehensive review is
beyond the scope of this paper; rather, it highlights specific
topics that represent major areas of current research.

How Are Humans Unique?

By aligning the human reference sequence to the genomes of
several closely related outgroup species, we can identify mu-
tations that have occurred on the recent human branch and
distinguish between ancestral and derived alleles at human
single nucleotide polymorphisms (SNPs). Over the whole ge-
nome, these mutations occur at a roughly constant rate, consis-
tent with the idea that the vast majority of substitutions are
selectively neutral (i.e., nonfunctional) (Kimura 1983).
Orangutans with a 2.4-fold higher sequence divergence
(compared with chimpanzees) are expected to have a
2.4-fold longer divergence time from humans, in relation to
the human-chimpanzee divergence time (Figure 1). Part of
the challenge of identifying the genetic basis of human-
specific morphological change is the difficulty in distin-
guishing between rare functional mutations and the more
common selectively neutral mutations that separate humans
from the great apes. For obvious ethical reasons, function
can generally not be inferred in vivo. Rather, indirect compu-
tational techniques, as well as the utilization of a more dis-
tantly related animal model (e.g., mice and fruit flies) have
been used to identify human-specific adaptations.

Coding Changes

One approach for identifying human-specific adaptions is to
scan the exomes of humans (and various outgroups) to iden-
tify genes with patterns of genetic variation that are consistent
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with the action of recent natural selection. For example,
Enard and colleagues (Enard et al. 2002) sequenced the
FOXP2 gene, a forkhead class transcription factor, in humans,
great apes, and mice. The gene is highly conserved among
mammals, with just one non-synonymous (i.e., amino-acid
changing) mutation separating the chimpanzee and mouse cod-
ing sequences. This conservation is not due to a low mutation
rate, as there are 147 synonymous (i.e., non-amino acid chang-
ing) mutations between chimpanzees and mice. However, on
the human-specific branch, there are two non-synonymous
mutations and no synonymous mutations, which is signifi-
cantly different from expectations (p<10−3, Fisher’s exact
test). Enard and colleagues interpreted this (and other evidence)
as support for recent positive selection in the human lineage
(Enard et al. 2002). Since mutations in FOXP2 can cause defi-
ciencies in spoken language capacity, Enard and cohort specu-
lated that the non-synonymous mutations in FOXP2 were
related to humans’ ability to develop complex forms of
communication. Subsequent work has shown that both Nean-
derthals and Denisovans also contain these two recent non-
synonymous mutations (Krause et al. 2007; Reich et al. 2010),
though this observation can be interpreted in different ways
(Coop et al. 2008; Ptak et al. 2009). Recent work has suggested
that a mutation at a transcription factor binding site in intron 8
of the FOXP2 gene affects FOXP2 expression levels. These ex-
pression levels might have been recently selected for because
they differ between modern humans and Neanderthals (Maricic
et al. 2012).
Subsequently, researchers have searched more systemati-

cally through many different genes to look for a similar
signal of increased human-specific, non-synonymous substi-
tutions relative to synonymous substitutions; first using un-
rooted trees (Clark et al. 2003; Nielsen et al. 2005) and later
with one or more outgroups (Rhesus Macaque Genome
Sequencing and Analysis Consortium 2007; Lindblad-Toh
et al. 2011). These studies have identified functional catego-
ries (i.e., the genes involved in spermatogenesis) that are en-
riched in genes showing evidence for positive selection, but
the biological insight gained from these broad surveys is

somewhat limited. Deeper insight generally requires addi-
tional information from physiological, behavioral, or target-
ed genetic studies. For example, great ape species differ in
the size and structure of their social groups—chimpanzees
live in multi-male, multi-female groups; gorillas live in sin-
gle male, multi-female groups; and orangutans are mostly
solitary. These life-history traits suggest that different great
ape species undergo different sexual selection pressures. In
particular, since receptive chimpanzee females mate with
multiple males (unlike gorilla and orangutan females), it is
expected that sperm competition will be more important for
chimpanzee males than for males of other great ape species.
Both physiological (Harcourt et al. 1981) and genetic (Dorus
et al. 2004) studies provide support for this hypothesis, and
may provide a partial explanation for the prevalence of genes
that are involved in spermatogenesis that appear to be affect-
ed by recent positive selection.

Another approach for detecting the action of recent natural
selection on the human lineage involves comparing synony-
mous (i.e., non-amino-acid changing) versus non-synonymous
(i.e., amino-acid changing) polymorphisms and substitutions.
If a gene has been subject to recent positive (i.e., adaptive) se-
lection, this can lead to the fixation of several non-synonymous
mutations, and an excess of non-synonymous substitutions
relative to non-synonymous polymorphisms (McDonald and
Kreitman 1991). Conversely, under continued purifying se-
lection most non-synonymous mutations will be deleterious,
and very few will rise in frequency to become fixed differences.
This will tend to produce a deficit of non-synonymous sub-
stitutions relative to non-synonymous polymorphisms. Busta-
mante and colleagues examined the patterns of polymorphism
and divergence in thirty-nine humans (20 European-Americans
and 19 African-Americans) and one chimpanzee at more
than 11,000 different protein-coding genes (Bustamante
et al. 2005). As with other studies, they found certain func-
tional categories were overrepresented (or underrepresented)
among genes that they had inferred to be recently selected
for, but functional insight for specific genes was minimal.

Regulatory Changes

One potential limitation of the studies described above is that
they are confined to protein-coding regions, which comprise
<2% of the human genome. It is possible that most of the ge-
netic changes that “make us human” involve regulatory se-
quences rather than coding sequences (King and Wilson
1975). To identify the noncoding regions that are important
to recent human evolution, Pollard, Siepel, and colleagues
developed a likelihood-ratio test to estimate the statistical
significance of regions that show an apparent increase in the
substitution rate on the human evolutionary branch (Siepel,
et al. 2006). Siepel and cohort then applied this method to
whole genome sequence data from humans, and several oth-
er vertebrates, to identify 202 regions that showed significant
rates of human-specific evolution (Pollard, Salama, King
et al. 2006), which they called human accelerated regions

Figure 1. Schematic showing the evolutionary relationships and
approximate divergence times among the great apes and humans.
Ppy, Pongo pygmaeus; Pab, P. abelii; Ggo, Gorilla gorilla; Gbe, G.
beringei; Hsa, Homo sapiens; Ppa, Pan paniscus; Ptr, P. troglo-
dytes; Mya, Million years ago.
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(HARs). The most significant of these regions, HAR1, has
18 substitutions in 118 base pairs (relative to chimpanzees)
and contains part of a novel RNA gene that is expressed in
the human neocortex from seven to nineteen gestational
weeks (Pollard, Salama, Lambert et al. 2006). Though the
specific function of HAR1 is not known, it is tempting to
speculate that it is related to the extreme growth in size and
complexity of human brains in relation to other apes.

Pollard, Salama, King et al. (2006) found the substitutions
at HARs show a weak-to-strong bias (i.e., tend to be from A
or T to G or C), and that HARs tend to be in regions of high
recombination. Both of these observations are consistent
with the possibility that GC-biased gene conversion may
play an important role in the creation of HARs (Galtier and
Duret 2007; Katzman et al. 2010).

A complementary approach to identifying important regu-
latory changes involves analyses of gene expression levels
using microarrays, or large-scale sequencing of RNA (RNA-
seq) using next-generation sequencing (Romero et al. 2012).
One intriguing hypothesis is that humans’ unique cognitive
abilities are due to changes in gene expression patterns in the
brain during development (Caceres et al. 2003; Nowick et al.
2009; Xu et al. 2010), and there is some evidence in favor of
this idea (Somel et al. 2009). More generally, measurements
of gene expression within individuals of the same species,
and between individuals of different species, are informative
about the current or past action of natural selection for
specific expression levels. For example, if between-species
levels of gene expression variation are no larger than
within-species levels, stabilizing selection on gene regula-
tion is a likely explanation (Gilad et al. 2006). In contrast, if
a higher expression level is observed specifically in one spe-
cies, then directional selection for differential expression in
that species is most likely operating. Recent studies have
shown that the regulation of a majority of the genes in the
genome evolve under evolutionary constraint, consistent
with widespread stabilizing selection (Lemos et al. 2005;
Rifkin et al. 2005). In addition, a substantial fraction of
human and great ape genes show species-specific changes in
gene expression levels that are best explained by recent
positive selection (Gilad et al. 2006; Blekhman et al. 2008).
Finally, it is important to note that gene expression levels are
only an intermediate phenotype, and evidence of differential
expression across species provides only a starting point for
targeted studies to determine the genetic mechanism causing
the difference and the function consequences (if any).

Gain or Loss of Genes

A related approach focuses on identifying and characterizing
the gain or loss of genes in the human lineage subsequent
to the divergence of humans and chimpanzees. Olson pro-
posed that gene loss could be an important mechanism in the
evolution of human-specific traits (Olson 1999). However,
further studies have found that the rate of gene loss in the
human-specific lineage is the same as the comparable rate in

other great ape lineages (Kim et al. 2010; Prado-Martinez
et al. 2013), suggesting that humans are not unusual in their
rate of genic turnover. While this does not disprove Olson’s
hypothesis, it suggests that whatever role gene loss plays in
species-specific traits is likely to be a general (rather than
human-specific) phenomenon. In a few cases, more detailed
studies have highlighted potential selective explanations for
complete (Stedman et al. 2004) or partial (Xue et al. 2006)
loss of genes in humans. Conversely, while several human-
specific genes have been identified (Knowles and McLy-
saght 2009; Wu et al. 2011), most of these genes are of
unknown function (but see [Buhl et al. 2006; Hu et al.
2012]), making their relevance to recent human evolution dif-
ficult to quantify.

Structural Changes

Humans have a diploid chromosome number of 2n = 46,
while the great apes have 2n = 48 chromosomes (Yunis and
Prakash 1982). Evolutionary genetic studies of the human
chromosome 2 have highlighted additional evidence that this
chromosome was formed by a fusion of two autosomes with-
in the past several million years (Dreszer et al. 2007; Auton
et al. 2012; Ventura et al. 2012). Additional human-specific
inversions (Yunis and Prakash 1982) and copy number varia-
tions (Dumas et al. 2007) were identified by conventional
banding techniques, while more recent array-based com-
parative genomic hybridization experiments (Linardopoulou
et al. 2005; Goidts et al. 2006; Wilson et al. 2006) and
next-generation sequencing studies (Alkan et al. 2009) have
identified many more large rearrangements and segmental
duplications that are unique to the human lineage. When all
forms of variability are taken into account, the estimated di-
vergence between humans and chimpanzees increases from
1.2% (single nucleotide polymorphisms at aligned ortholo-
gous sites) to ∼5% (Britten 2002). It is unclear what, if any,
functional relevance many of these structural changes have
in humans, though it may be relevant that regions near cyto-
genetically visible changes in the human genome are en-
riched for recent gene duplications and new genes (Fortna
et al. 2004; Dumas et al. 2007).

Comparative Demography

The amount of divergence between two DNA sequences is,
on average, directly proportional to the time since they last
shared a common ancestor. By comparing patterns of genetic
variation across multiple individuals from different popula-
tions, it is possible to make inferences about a species’ demo-
graphic history including population migration, changes in
population size, geographic structure, and admixture between
diverged populations. By inferring demographic parameters
in both humans and great apes, it can be determined if particu-
lar observations that are found in one species are common or
unusual. This, in turn, allows for a more realistic assessment
of the ways in which the human species might be unique.

84 ILAR Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/ilarjournal/article-abstract/54/2/82/772507 by guest on 24 M

arch 2020



Population Size

The current census size for the human population tops out at
more than 7 billion individuals and continues to grow very
rapidly. However, it is known that even as recently as several
centuries ago, the human population size was orders of mag-
nitude smaller. In fact, genetic studies have consistently
found that two randomly chosen human chromosomes tend
to differ from each other at roughly 1 in a 1000 base pairs,
which is consistent with a long-term effective population
size (Ne) of 10,000–15,000 (Li and Sadler 1991; Harding
et al. 1997; Frisse et al. 2001). Here, Ne refers to the size of a
randomly mating population that is expected to have the
same levels of genetic diversity as what is observed. Al-
though there are many reasons why Ne might be less than the
census population size (Caballero 1994), the difference in
magnitude is still immense, and requires explanation. The
current belief is that for much of human history, the popula-
tion sizes were much smaller, and it is only very recently
(i.e., within the past 20-30 thousand years) that the popula-
tion sizes have increased rapidly (Pluzhnikov et al.2002;
Voight et al. 2005; Gutenkunst et al. 2009). Recent studies
have identified an excess of very rare single nucleotide vari-
ants (minor allele frequency<0.1 %), consistent with explo-
sive population growth over the past several thousand years,
starting subsequent to the development and spread of agri-
culture (Coventry et al. 2010; Nelson et al. 2012).
In contrast, extant great apes are found exclusively in Old

World tropical rain forests, and their ranges (and estimated
census population sizes) have decreased dramatically over
the past 200 years (Junker et al. 2012). While initial esti-
mates of great ape genetic diversity from microsatellites
were low (Wise et al. 1997; Cooper et al. 1998), subsequent
studies of nuclear sequence variation have found that all
great ape species, except for bonobos, have levels of genetic
variation substantially higher than the levels of human genet-
ic variation (Kaessmann et al. 2001; Fischer et al. 2006;
Locke et al. 2011; Prado-Martinez et al. 2013). Since the un-
derlying mutation rates are unlikely to be different between
humans and great apes, the differences can be attributed to
chimpanzees, gorillas, and orangutans having larger long-
term Ne’s than humans have. This finding highlights the val-
ue of a comparative demographic approach, as it emphasizes
that the current human dominance (both in range and popu-
lation size) is very recent—even though humans’ ancestors
had populated Eurasia and Africa for almost 2 million years,
while the great apes have been confined to a much smaller
area during that time. Most likely, there were more chimpan-
zees, gorillas, and orangutans around at any time prior to
50,000 years ago than there were humans.
Studies that estimate ancestral (effective) population sizes

(Na) provide additional evidence that humans’ current Ne is
unusually low. Takahata (1993) examined genetic diversity
in the human major histocompatibility complex (MHC), and
concluded that the diversity was consistent with a Na

of ∼ 100,000. Other approaches, such as using the variance
in human-chimpanzee divergence across the genome, the

discordance of gene trees across the genome, or maximum-
likelihood techniques, have estimated Na≥50,000 for the
population ancestral to humans and chimpanzees (Takahata
and Satta 1997; Chen and Li 2001; O’hUigin et al. 2002;
Wall 2003; Burgess and Yang 2008). While estimates of Na

can be inflated due to past population structure, the basic pic-
ture appears to be that almost all extant and ancestral ape
populations have (or had) substantially more genetic varia-
tion (and larger effective population sizes) than extant mod-
ern humans.

Population Structure

An additional way of viewing the low Ne in humans is the
idea that all extant people are genetically similar when com-
pared with the great apes. Another facet of this idea is that all
great apes consist of groups of diverged populations that are
taxonomically considered to be separate species or sub-
species (Groves 2006). Currently, there are the chimpanzee
and bonobo (P. troglodytes and P. paniscus respectively),
two gorilla species (Gorilla gorilla and Gorilla beringei),
and two orangutan species (Pongo pygmaeus and Pongo
abelii), and additional subspecies from each group, com-
pared with just a single extant species and subspecies of
Homo sapiens sapiens. Sister great ape species within the
same genus can interbreed and produce fertile offspring in
zoos, but not in the wild where their ranges generally do not
overlap. The taxonomic differences between great ape popu-
lations are not purely semantic though, in that the genetic
distance between great ape species is substantially larger
than the genetic distance between isolated human groups
(Fischer et al. 2006; Wall et al. 2008). Broadly speaking, the
existence of multiple diverged populations that can admix
and interbreed is the general pattern in catarrhine primates,
including gibbons, macaques, baboons, vervets, and gue-
nons (Jolly 2001; Arnold and Meyer 2006), with humans
and a few isolated species (e.g., the siamang) as outliers. It is
unclear why this is so, but perhaps some aspect of life-
history behavior, mate choice, or migration facilitates the iso-
lation (and genetic divergence) of nearby populations. Inter-
estingly, just 50,000 years ago, the human species coexisted
with at least three other archaic human groups, including Ne-
anderthals, Denisovans, and Homo floresiensis (Wall and
Slatkin 2012), and potentially several other diverged popula-
tions (Harvati et al. 2011; Curnoe et al. 2012). H. floresiensis
coexisted with modern humans in island Southeast Asia as
recently as 12,000 years ago (Morwood et al. 2005). Perhaps
not coincidentally, these archaic human groups all disap-
peared around the same time as modern human populations
started to increase rapidly in size.

X Versus Autosome Comparisons

Comparative studies of humans and great apes can also shed
light on sex-specific differences, and life-history traits in
each species. In a randomly mating population with equal
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numbers of males and females, there are three X chromo-
somes for every four autosomes, leading to a 3:4 ratio in
expected levels of diversity in X versus autosome compari-
sons. If a species is generally polygynous, there will be more
breeding females than breeding males, which tends to in-
crease the ratio of X-to-autosome diversity (Caballero 1994).
Gorillas, who are strongly polygynous, are expected to have
increased relative levels of X-linked diversity when com-
pared with humans (weakly polygynous) and gibbons (mo-
nogamous). Concurrently recent positive selection, which
decreases levels of genetic variation, is expected to affect the
X chromosome more than the autosomes due to hemizygos-
ity in males and the recessivity of some advantageous al-
leles. Analyses of human polymorphism data show the
effects of both of these evolutionary processes (Hammer
et al. 2008; Hammer et al. 2010; Keinan et al. 2009). Over-
all, the ratio of X-to-autosome diversity is much less than
0.75, which is consistent with the stronger effect of selection
on the X chromosome. However, if the analysis is confined
to regions far away from genes, where natural selection plays
less of a role, the situation is reversed, with X-to-autosome
ratios significantly higher than 0.75. A full analysis of whole
genome sequencing data from the Great Ape Genomes Pro-
ject (Prado-Martinez et al. 2013) is currently in process, and
the results will be informative about the relative roles of nat-
ural selection, mating system, and sex-specific migration in
shaping genome-wide patterns of genetic variation.

Comparative Population Genetics

As hinted at above, between-species comparisons can also
be informative about other population genetic processes
such as natural selection, mutation, and recombination. Two
examples are discussed in greater detail below.

Recombination rates vary dramatically between individu-
als and between different regions of the genome. In particu-
lar, it is now well established that most recombination events
occur in narrow 1–2 kilobase (kb) wide “hot spots”, with
almost two-thirds of all crossovers occurring in 10% of the
human genome (Myers et al. 2005). Roughly 40% of
these recombination hot spots contain a (partially degener-
ate) thirteen base pair sequence motif, which matches the
predicted binding site of the PRDM9 gene, and is thought to
be involved in double strand break formation (Baudat et al.
2010; Myers et al. 2010). PRDM9 evolves rapidly in meta-
zoans (Oliver et al. 2009), and specific single nucleotide var-
iants have been shown to strongly affect male recombination
rates (Berg et al. 2010).

Recent studies of recombination in chimpanzees have
shown that humans and chimpanzees generally do not share
recombination hot spots (Wall et al. 2003; Ptak et al. 2004;
Winckler et al. 2005; Auton et al. 2012), but most hot spots
are shared across different human populations. Further, there
is not a simple sequence motif that appears to be associated
with the location of chimpanzee hot spots (Auton et al.
2012). This situation is not surprising, since there is a single

dominant PRDM9 allele at high frequency in humans (corre-
sponding to the thirteen base pair [bp] sequence motif found
near human recombination hot spots) but many low frequen-
cy PRDM9 alleles in chimpanzees. Even if PRDM9 plays a
primary role in hot spot localization, it appears that the allelic
diversity at PRDM9 in chimpanzees promotes a wide array
of different hot spot locations in different chimpanzee indi-
viduals. Since large-scale detection of recombination hot
spots is based on patterns of linkage disequilibrium, which
reflect long-term average rates of recombination, it is unlike-
ly that a particular sequence motif will be associated with
hot spots unless there is a dominant (i.e., high-frequency)
PRDM9 allele. It remains to be seen how common hot spot
motifs are, but ongoing studies of recombination rates in all
great ape species will provide a partial answer to this ques-
tion (L Stevison and J Wall, unpublished data).
Whole genome sequence polymorphism data in great apes

also help facilitate the search for polymorphisms that are
shared by descent between multiple species. Theory suggests
that such ancient shared polymorphisms are unlikely to arise
by chance (Leffler et al. 2013), and are more likely due to
long-lived balancing or frequency-dependent selection (e.g.,
selection for rare alleles, or selection for heterozygotes). One
well-known example of ancient balancing selection is from
the MHC, which has a primary role in the active immune
system (Klein et al. 1993). Mutations in the MHC have been
shown to be present before the split of humans from the great
apes, and to persist as polymorphisms in multiple species
due to selection favoring heterozygous genotypes for over
12 million years (Ayala 1995). Beyond this one well-known
example, the evidence for ancient balancing selection is rare,
in part because of the difficulty in distinguishing mutations
that are identical by descent (i.e., arose before the split of hu-
mans and chimpanzees) from those that are identical by state
(i.e., parallel mutations that happened at the same nucleotide
site in multiple species). Whole genome sequence data
makes it possible to distinguish between the two by looking
for multi-SNP haplotypes shared across species (Leffler
et al. 2013). Leffler and colleagues utilized complete ge-
nome sequences from fifty-nine humans and ten chimpan-
zees to identify 125 regions with haplotypes shared between
humans and chimpanzees. These regions are significantly
enriched for membrane glycoproteins, suggesting that genes
involved in host-pathogen interactions are more likely to
have been subject to ancient balancing selection. This idea is
in keeping with previous studies of ancient balancing selec-
tion in humans (Klein et al. 1993; Segurel et al. 2012) as
well as more recent balancing selection in humans and other
species (Stahl et al. 1999; Hedrick 2011).

Great Apes as Reservoirs of Disease

One area where great ape genomics is of direct relevance to
human health involves infectious diseases that are shared
across species (i.e., zoonosis). The most well known exam-
ple concerns HIV-1, a strain of human immunodeficiency
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virus that is pandemic in humans (Sharp and Hahn 2011).
Initial genetic studies of HIV found that the disease was
closely related to other lentiviruses found in African apes
and monkeys. It has been shown that HIV-1 is similar to
SIVcpz, a simian immunodeficiency virus found in the cen-
tral chimpanzee Pan troglodytes troglodytes (Huet et al.
1990). Subsequent studies of natural chimpanzee popula-
tions confirmed P. t. troglodytes as a natural reservoir of
HIV-1, and indicated that there had been multiple transmis-
sion events of HIV from chimpanzees to humans (Keele
et al. 2006). Chimpanzees in turn are thought to have ac-
quired SIVcpz relatively recently from eating infected mon-
keys (mangabeys, guenons, or both). There is some evidence
that chimpanzees infected with SIVcpz can develop AIDS
(Sharp and Hahn 2011), but there is a possibility that studies
of how chimpanzees (and gorillas who are infected by SIV-
gor) physiologically respond to SIV may provide some in-
sight into how humans can treat current HIV-1 infections.

Conservation Biology

One of the primary motivations for studying great ape de-
mography is to help inform advocacy and policy decisions
for promoting the conservation, health, and genetic diversity
of our evolutionary cousins. All great ape species are consid-
ered to be Endangered or Critically Endangered by the Inter-
national Union for Conservation of Nature (IUCN 2012) due
to the recent drastic reduction of their rainforest habitat (Jun-
ker et al. 2012). From a conservation perspective, the priority
is obviously to increase (or maintain) suitable habitats for
great apes, and to eliminate (or reduce) human-mediated
mortality, but there is an important role for genomics in help-
ing conservation biologists focus their efforts. DNA-based
studies can help identify populations that are genetically dis-
tinct from all others, which can elevate the importance of
preserving them as a previously unknown reservoir of genet-
ic diversity. For example, a study of orangutan mtDNA
helped the recognition of the Sumatran orangutan as a sepa-
rate species (Xu and Arnason 1996), and a study of autoso-
mal SNP variation argued for the creation of a fourth
chimpanzee subspecies, Pan troglodytes ellioti (Bowden
et al. 2012). Genetic studies have also estimated the extent of
recent population decline in orangutans (Goossens et al.
2006) and chimpanzees (Campbell et al. 2008), and identi-
fied important evidence for long-range migration in the
Sumatran orangutan (Nater et al. 2013). Finally, additional
analyses are possible with widespread whole-genome se-
quence data in great apes. To some extent, the provenance of
captive animals can be inferred from large-scale genetic
data, and recent work suggests that most captive individuals
are genetically admixed from two, or more, distinct wild-
born populations (Prado-Martinez et al. 2013). Prado-
Martinez and colleagues also utilized runs of homozygosity
(McQuillan et al. 2008) to quantify the extent of inbreeding
in different great ape species. Bonobos had large homozy-
gous tracts similar to isolated human groups that are known

to have small population sizes (e.g., the Karitiana from Bra-
zil), suggesting that inbreeding is an ongoing concern in ex-
tant bonobo populations.

Conclusions

Given the dire situation that all great ape populations current-
ly face, there is added motivation for researchers to learn as
much as possible from their genomes, both to provide addi-
tional justification for conservation efforts and because such
studies may be impossible in the not-too-distant future. As
highlighted above, great ape genomic studies have already
been highly informative in regards to human biology, human
history, and the effects of natural selection. The great apes
are likely to remain of critical importance for future human
genetic studies, even without the benefits of manipulative
studies that are used in model organisms such as the ma-
caque or the mouse.
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