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1  | INTRODUC TION

Behavioural observations of bonobos (Pan paniscus) have revealed 
that their preferred foods are fruit, yet they consume terrestrial her-
baceous vegetation (THV) throughout the year (Badrian, Badrian, 
& Susman, 1981; Badrian & Malenky, 1984; White, 1992). THV ac-
counts for ~2% of bonobo diets but many bonobo sites are char-
acterised by dense understories, obscuring feeding observations on 
the ground. THV has been viewed as an important food source for 
P. paniscus, and some evidence suggests that the THV consumed 
by bonobos bears higher nutritional yields than that consumed by 
chimpanzees (Pan troglodytes) in East Africa (Malenky & Wrangham, 
1994).

Stable isotope analysis has been used to supplement feeding ob-
servations of nonhuman primates (NHPs) and has helped further our 
knowledge of the dietary patterns of Pan spp. (Loudon, Sandberg, 
Wrangham, Fahey, & Sponheimer, 2016; Schoeninger, Most, Moore, 
& Somerville, 2016). The δ13C and δ15N values of an animal reflect 
the foods they ate and are permanently recorded in their tissues or 
excreta (Sandberg, Loudon, & Sponheimer, 2012). Since NHPs con-
sume plants, botanical δ13C and δ15N values aid interpretations of 
their stable isotope compositions. Most tropical grasses use the C4 
photosynthetic pathway and have tissue δ13C values between −11‰ 
and −14‰ (O'Leary, 1988). In contrast, trees, shrubs and temperate 

grasses follow the C3 photosynthetic pathway and have δ
13C val-

ues averaging about −27‰ and range between −23‰ and −31.5‰. 
The range of δ13C values in C3 plants is in part due to a “canopy 
effect.” Plants growing under dense canopy cover have lower δ13C 
values than plants in open areas due to the incorporation of 13C‐de-
pleted CO2 produced by decaying leaves (Medina & Minchin, 1980) 
and lower light intensities (Ehleringer, Field, Lin, & Kuo, 1986). Plant 
organs also vary in carbon isotope compositions with nonphotosyn-
thetic organs typically exhibiting higher δ13C values compared to 
leaves (Codron et al., 2005). Nitrogen isotopic variation is more dif-
ficult to interpret. However, animal tissues are usually 15N‐enriched 
relative to diet and there is a stepwise increase in δ15N values (~3‰) 
with each trophic level (Schoeninger & DeNiro, 1984).

We explore the stable isotope ecology of P. paniscus through 
analysis of faeces from the Iyema bonobos inhabiting the Lomako 
Forest in the Democratic Republic of the Congo (DRC). To contex-
tualise these data, we compare them to stable isotope data from 
hair (after transformation to hair‐equivalent values) collected from 
other Pan communities and to the δ13C and δ15N values of available 
plants from other Pan sites. Based on the structural attributes of the 
Lomako forests, we expect the Iyema community will exhibit lower 
δ13C values compared to Pan communities living in forests with dis-
continuous canopies or communities in anthropogenically disturbed 
forests or open savannahs (Loudon et al., 2016). We predict that the 
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Iyema δ13C and δ15N values should align closely to the values of the 
LuiKotale bonobo community based on the canopy cover and the 
feeding ecology of each community (Oelze et al., 2011; White, 1992). 
We also predict that the Iyema bonobos stable isotope compositions 
will closely resemble Lomako fruit values and should overlap on iso-
topic bi‐plots.

2  | MATERIAL S AND METHODS

Fifty‐seven bonobo faecal samples were collected from the Iyema 
field site in the Lomako Forest (00°55′N, 21°06′E) located in the 
DRC in June–July 2014. Iyema is a ~16‐km2 study area, consisting 
of primary rainforests and some secondary rainforests and swamp 
forests (White, 1992). The forest floor is carpeted with THV, and all 
levels of the canopy are characterised by dense foliage consisting 
of shrubs, lianas and trees of various heights forming a continuous 
canopy (Badrian & Malenky, 1984). The bonobos are semi‐habitu-
ated, and a best abundance estimation model suggests there are 
26–66 individuals in the community (Brand et al., 2016). Faecal sam-
ples were collected after defecation, and we recorded the date, geo-
graphic location and, when possible, the age/sex of the individual. 
For some individuals, we collected multiple samples. Faeces provide 
stable isotope data on the undigested portion of an individual's diet 
on the order of days, limiting our abilities to examine seasonal dif-
ferences but provide short‐term feeding data. We collected plant or-
gans (i.e., fruits, leaves, piths and seeds) from three different heights 
including ground level (0–2 m), mid‐canopy (2–10 m) and high canopy 
(10+ m). We also collected from lianas that originated in the mid‐ or 
high canopy and drew nutrients from trees, and then grew down-
ward. We note lianas specifically, since their δ13C values can be im-
pacted by the height at which they drew nutrients. All samples were 
dried on‐site using a camp stove and placed in labelled bags with 
desiccant. This research complied with the University of Oregon's 
Institutional Animal Care and Use Committee (#12‐09), adhered to 
the legal requirements of the DRC, and was approved by the Institut 
Congolais pour la Conservation de la Nature (#0492).

Samples were ground into powder, weighed to ~1.5 mg, placed 
in tin capsules and combusted in an elemental analyser for stable 

carbon and nitrogen isotope abundances using a flow‐through inlet 
system on a continuous flow isotope ratio mass spectrometer. 
13C/12C and 15N/14N ratios are expressed using the delta (δ) notation 
in parts per thousand or permil (‰) relative to the Vienna PeeDee 
Belemnite (VPDB) and atmospheric N2 (AIR) standards, respectively.

To examine the relationship between the stable isotope values 
of the Iyema bonobos and the plants at Lomako, we added 0.7‰ to 
the δ13C values and subtracted 2.0‰ from the δ15N values of faeces 
(Sponheimer, Robinson, Ayliffe, et al., 2003). To compare the Iyema 
values to published hair stable isotope compositions from other 
chimpanzee and bonobo communities, we adjusted the faecal values 
to their hair equivalents by adding 3.7‰ to the faecal δ13C values 
(Sponheimer, Robinson, Ayliffe, et al., 2003) and 1.0‰ to the faecal 
δ15N values (Sponheimer, Robinson, Roeder, et al., 2003). To control 
for changes in the δ13C compositions of atmospheric CO2 linked to the 
burning of fossil fuels (McCarroll & Loader, 2004), we added 1.83‰ 
to the Iyema δ13Chair values. Previously published hair isotope data 
were adjusted to pre‐industrial equivalents, and the Pan data sets re-
quired to make such adjustments are available here: https://figshare.
com/articles/Supporting_Data_Loudon_et_al_2016_AJP/3179371

We compared the bonobo communities to three broad habitat 
categories inhabited by P. troglodytes that we refer to as “forest,” 
“savannah” and “anthropogenically‐disturbed.” Those communities 
inhabiting environments with a grass understory are defined as “sa-
vannah.” We compared the δ13C and δ15N values of plants collected 
at Lomako to those from Kibale (Blumenthal, Rothman, Chritz, & 
Cerling, 2016), Loango (Oelze, Head, Robbins, Richards, & Boesch, 
2014), Salonga (Oelze et al., 2011) and the Tai National Forest (Fahy, 
Richards, Riedel, Hublin, & Boesch, 2013). We used Welch's analy-
sis of variance (ANOVA) and Tukey's honest significant difference 
(HSD) pairwise tests to compare the δ13C and δ15N values of plants, 
faeces, or hair, for each community or habitat category (α = 0.05).

3  | RESULTS AND DISCUSSION

To date, the Iyema bonobo δ13Cfaecal values are the lowest published 
for any Pan community (−29.9‰ ± 0.5, n = 57) and they have among 
the highest δ15Nfaecal values (7.8 ± 0.6‰, n = 57; see Supporting 

TA B L E  1   δ13C and δ15N mean and standard deviations for Lomako plant organs, plants collected at differing canopy levels, and bonobo 
faecal values after correcting for faecal‐diet offsets

Plant organ N δ13C‰ δ15N‰ Height N δ13C‰ δ15N‰

Fruit 20 −30.2 ± 2.7 6.1 ± 1.8 Ground (0−2m) 7 −36.8 ± 2.9 6.1 ± 3.0

Leaves 9 −36.7 ± 3.3 4.7 ± 2.8 Mid‐canopy (2−10m) 14 −31.6 ± 4.2 6.0 ± 1.6

Pith 5 −33.6 ± 4.0 6.4 ± 3.0 Canopy (>10m) 13 −30.9 ± 3.0 6.0 ± 2.2

Seed 5 −29.1 ± 1.7 6.4 ± 1.8 Lianaa  5 −28.9 ± 1.5 4.8 ± 2.8

Bonobosb  57 −29.2 ± 0.5 5.8 ± 0.6 Bonobosb  57 −29.2 ± 0.5 5.8 ± 0.6

Notes. The δ13C data presented here were not corrected for the burning of fossil fuels.
aLianas are vines that grew from the mid‐ or high canopy downward, drawing nutrients from trees at that strata and thus impacting their carbon 
stable isotope values. bThe bonobo values presented here reflect faecal‐diet offsets by adding 0.7‰ to the δ13Cfaecal values and subtracting 2.0 to 
the δ15Nfaecal values. 
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Information Table S1 for bonobo data). The bonobo faecal stable iso-
tope data are driven by the Lomako plants which have very low δ13C 
values (−32.0‰ ± 4.0, n = 39) and high δ15N values (5.8‰ ± 2.2, 
n = 39; plant data are presented in Supporting Information Table 
S2). When we converted the δ13Cfaecal and δ15Nfaecal values to their 
dietary equivalents, the Iyema bonobos had diets with isotopic com-
positions similar to seeds and fruits, and their diets were isotopi-
cally similar to nonleaf canopy plant parts (Table 1; Figure 1). These 
data accord well with observations and faecal analyses collected at 
Lomako. Badrian et al. (1981) observed that fruit accounted for 49% 
of the bonobo diet, Badrian and Malenky (1984) found that fruit 
consisted of 54% of their diet, and White (1992) found that fruit ac-
counted for 72% of feeding observations. The high δ15Nfaecal values 
of the Iyema bonobos are consistent with a fruit‐rich diet, although 

piths and seeds are good fits from this perspective. The δ13Cfaecal and 
δ15Nfaecal data are most consistent with the Iyema bonobos having 
diets of chiefly fruits and/or seeds when plotted in isotopic bi‐space 
(Figure 1). In terms of canopy stratification, White (1992) found that 
the Lomako bonobos spent 5.4% of all observations on the ground 
and feeding on THV accounted for 2.1% of observations. Analyses 
of Lomako THV suggest it provides high nutritional yields (Malenky 
& Stiles, 1991; Malenky & Wrangham, 1994) and that it is used as a 
protein source for the bonobos (White, 1996). However, isotopically, 
we could not detect the consumption of THV, which is consistent 
with its consumption being rare as noted by White (1992). In general, 
the stable isotope data suggest that the Iyema bonobos preferen-
tially eat plants at the canopy and mid‐canopy including lianas which 
originate at these strata (Figure 1).

F I G U R E  1   Iyema bonobo faecal 
δ13C and δ15N values converted to their 
dietary equivalents plotted with values 
from Lomako plant organs (a) and canopy 
height (b)
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We found differences in the δ13Cplant (F4, 87.7 = 13.7; p < 0.0001) 
and δ15Nplant values (F4,93.6 = 8.8; p < 0.0001) among the five Pan 
communities (Supporting Information Table S3). The δ13C values of 
the Lomako plants are lower than the plants at Salonga (p < 0.0001), 
which is inhabited by the LuiKotale bonobos (Oelze et al., 2014), 
and the plants at Kibale (p < 0.0001). Differences in foliar δ13C 
values across wide geographic regions are influenced by mean an-
nual precipitation (Loudon et al., 2016). The differences in the δ13C 

values between Salonga and Lomako occurred despite both sites 
are characterised by continuous canopies. Moreover, at Lomako, 
we found that the ground‐level plants had δ13C values that were 
5.9‰ lower than those of canopy plants (Supporting Information 
Table S3). In the closed canopy forests of Kibale, differences be-
tween the δ13C values of leaves collected in the understory ver-
sus the subcanopy and canopies were ~2.9‰ (Blumenthal et al., 
2016). Despite the differences in the δ13C values of the plants at 

TA B L E  2  Site, mean annual precipitation, δ13Chair and δ15Nhair mean and standard deviation data, and sample size for chimpanzee (Pan 
troglodytes) and bonobo (Pan paniscus) communities, and ecological category or Pan species

Site Rainfall (mm) N δ13C‰ δ15N‰ Reference for isotope data

Lake Kerere (Uganda) 1,750 9 −20.6 ± 0.4 5.9 ± 0.2 Loudon et al., 2016

Miranga Village (Uganda) 1,700 5 −19.5 ± 1.0 5.8 ± 0.1 Loudon et al., 2016

“Disturbed forest” P. troglodytes   14 −20.2 ± 0.9 5.8 ± 0.2  

Cameroon 1,700 38 −23.5 ± 0.7 9.3 ± 0.8 Macho & Lee‐Thorp, 2014

Chambura Gorge (Uganda) 950 7 −21.6 ± 0.9 8.4 ± 0.5 Loudon et al., 2016

Gombe (Tanzania) 1,250 13 −21.8 ± 0.3 3.5 ± 0.3 Schoeninger et al., 2016

Kanyanchu (Uganda) 1,500 4 −22.2 ± 0.1 7.7 ± 0.3 Loudon et al., 2016

Kanyawara (Uganda) 1,671 6 −21.7 ± 0.4 6.8 ± 0.9 Loudon et al., 2016

Loango (Gabon) 2,215 14 −22.8 ± 0.5 5.0 ± 0.4 Oelze et al., 2014

Tai National Forest (Côte d'Ivoire) 1,830 31 −23.6 ± 0.6 7.3 ± 0.6 Fahy et al., 2013

“Forest” P. troglodytes   113 −23.0 ± 0.9 7.3 ± 2.1  

Fongoli (Senegal) 900 36 −20.6 ± 0.4 2.9 ± 0.3 Sponheimer et al., 2006

Ishasha (DRC) 750 9 −21.8 ± 0.3 6.9 ± 2.1 Schoeninger et al., 1999

Ugalla (Tanzania) 1,012 8 −20.7 ± 0.3 2.3 ± 0.7 Schoeninger et al., 1999

“Savannah” P. troglodytes   58 −20.8 ± 0.6 3.5 ± 1.8  

Iyema (DRC) 2,000 57 −24.4 ± 0.5 8.8 ± 0.6 This study

LuiKotale (DRC) 2,000 33 −23.9 ± 0.2 8.4 ± 0.2 Oelze et al., 2011

“Bonobos” P. paniscus   90 −24.2 ± 0.5 8.7 ± 0.5  

Note. All δ13Chair values presented here have been adjusted to account for the burning of fossil fuels.

F I G U R E  2  Means and standard 
deviations of hair δ13C and δ15N values for 
Pan communities. All values were adjusted 
for the effects that fossil fuel burning has 
had on 13CO2 atm. Squares represent 
bonobos (Pan paniscus), circles represent 
“forest” chimpanzee (Pan troglodytes) 
communities, triangles represent 
“savannah” chimpanzee communities, and 
inverse triangles represent chimpanzee 
communities living in habitats with high 
degrees of anthropogenic disturbance
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these sites, the Salonga and Kibale forests are both characterised 
by continuous canopies.

We found differences in the δ13Chair (F13,46.2 = 271.3; p < 0.0001) 
and δ15Nhair values among the 14 Pan communities (F13,44.1 = 636.8; 
p < 0.0001; Table 2; Figure 2). Pairwise comparisons revealed that 
the Iyema bonobos had lower δ13Chair values (p < 0.001) than all the 
communities, and higher δ15Nhair values (p < 0.0001) for nine of the 
communities, with the exceptions being Cameroon, Kanyanchu, 
Chambura Gorge and LuiKotale. Comparisons between the Pan 
ecological categories (i.e., bonobos and P. troglodytes in “forest,” 
“savannah” and “anthropogenically‐disturbed habitats”) yielded dif-
ferences in δ13Chair (F3,54.7 = 523.8; p < 0.0001) and δ15Nhair values 
(F3,97.2 = 491.9; p < 0.0001; Table 2 and Supporting Information 
Figure S1). Pairwise comparisons showed that the bonobo commu-
nities exhibited lower δ13Chair values (p < 0.0001) and higher δ

15Nhair 
values (p < 0.0001) than the Pan communities living in the other eco-
logical categories.

Carbon isotope analyses of “savannah” chimpanzee communi-
ties have proven useful for understanding the behaviour and ecol-
ogy of extinct hominins, and it is thought that “savannah” Pan and 
early hominins utilised similar biomes (Schoeninger, Moore, & Sept, 
1999; Sponheimer et al., 2006). The stable carbon isotope com-
positions of these “savannah” communities are indistinguishable 
from those of Ardipithecus ramidus and Australopithecus anamensis 
(Loudon et al., 2016). In stark contrast, the δ13C values of the Iyema 
community resemble those of Gigantopithecus sp. (Nelson, 2014; 
Qu et al., 2014) which probably ate plants within a closed canopy 
and may have preferentially consumed THV which seems likely 
given its large body size.

Carbon isotope data for extinct and extant hominoids have re-
vealed a continuum of habitat and dietary patterns. On one end of 
this continuum lie the modern‐day bonobo communities that yield 
the lowest δ13C values and consume C3 plants growing in rainforests 
with continuous canopies. In contrast, “savannah” chimpanzees oc-
cupy the other end of the continuum whose values align with con-
sumption of plants in open environs and resemble some species of 
Ardipithecus and Australopithecus (Sponheimer et al., 2013).
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