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A picture of complex and recurrent interactions in humans 
and their extinct relatives emerged after the initial discovery 
of gene flow from Neandertals1—notably, from other homi-

nins into modern humans2–8, between Neandertals, Denisovans and 
other lineages9, and from humans into Neandertals10,11. Although 
introgressed haplotypes are often deleterious on the human back-
ground12,13, admixture seems to have been beneficial in some 
cases14,15. Unlike for the human lineage, fossils are rare for great 
apes. Since the split from hominins, which is possibly represented 
by fossils close to the common ancestor such as Sahelanthropus16, 
only chimpanzee fossils of an age of ~0.5 million years ago (Ma) 
have been described17.

However, signatures of admixture have been found in genomic 
data between different great ape populations18,19, and might be 
common in other primate taxa20. Ancient gene flow from bonobos 
into chimpanzees, probably more than 200,000 years ago, has been 
described previously21, but it is possible that these species of the Pan 
clade might have experienced further historical events of gene flow 
that have remained hidden from us so far. Knowledge about the 
divergence of chimpanzees and bonobos, and the range and habitat 
of proto-Pan populations, is not conclusive, particularly since it is 
unclear when and to what extent the Congo River has been a natural 
barrier22,23. It seems likely that the ancestors of bonobos separated 
from the ancestors of chimpanzees by crossing a reduced Congo 
River during a dry glacial period ~1.7 Ma, rather than by the forma-
tion of the river itself23,24, which may date back to 4 Ma25. Episodes 
of migration and gene flow might have happened during different 
glaciation periods, when river levels were low enough to provide 
windows of opportunity for crossing.

Here, we apply methods developed to identify introgression in 
the absence of ancient genomes7,26—either based on demographic 
modelling or an excess of private variation (Supplementary Fig. 1)—
to the whole genomes of 69 chimpanzee and bonobo individuals, to 

explore archaic gene flow using present-day variation. Western and 
central chimpanzees (Pan troglodytes verus and Pan troglodytes trog-
lodytes, respectively) are the two chimpanzee populations that differ 
the most from each other, both regarding the amount of gene flow 
with bonobos and their effective population sizes18,21,27. Hence, our 
main analysis focuses on these two groups, together with their sister 
species, bonobos (Pan paniscus).

Results
Gene flow between Pan populations. To detect introgressed 
genomic regions between species, we first computed the S* sta-
tistic, which reflects the amount and physical proximity (linkage 
disequilibrium) of private variation compared with a divergent 
reference panel, and has been used to infer signatures of gene flow 
in humans3,28–31 and to identify introgressed genomic segments5,7. 
We performed these calculations as implemented elsewhere7, but in 
a pairwise manner, testing each individual of the test population 
independently, with one of the two other populations as reference 
panels (Methods). Based on the results from a given reference, 
we could predict the expected S* for the other population using 
a generalized linear model and also detect outlier regions that we 
consider to be due to past introgression. In central chimpanzees, 
we find an unexpected sharing of private variation with bonobos 
(Supplementary Fig. 3), in agreement with gene flow from bonobos 
into non-western chimpanzees21.

To verify that S* outlier regions correctly detect introgression, 
we confirmed that they overlap more than expected with a previ-
ous screen for introgressed bonobo-like segments32. Both methods 
identify only a small proportion of the genome as introgressed (0.16 
and 0.24%, respectively). We further compared the number of pair-
wise differences of single-nucleotide variants (SNVs)8 between all 
individuals across all putatively introgressed windows, compared 
with the same number of randomly sampled windows. In agreement  
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with gene flow between species, we find that bonobo-like windows 
in central chimpanzees carry, on average, 1.75-fold more such dif-
ferences to other chimpanzee individuals than random regions 
(Supplementary Fig. 4). Moreover, in these regions, chimpanzees 
show a closer affinity to bonobos in a principal component analysis 
(PCA; Supplementary Fig. 7 and Supplementary Data) and in a phy-
logenetic tree (Fig. 1a,b and Supplementary Figs. 5 and 6).

To quantify the historical levels of gene flow and compare the 
likelihood of models with and without migration between chimpan-
zees and bonobos, we used a site frequency spectrum (SFS)-based 
composite likelihood method33, as described in detail previously21. 
We find support for gene flow between chimpanzees and bonobos, 
as those models fit the SFS data better (Supplementary Table 2), 
coherent with previous, more complex models21 (Methods). These 
models, as well as the S* analysis (Supplementary Fig. 3), might also 
support ancestral bidirectional gene flow (that is, from chimpanzees 
into bonobos), although it remains difficult to discern the relation-
ship of the introgressing population with the extant chimpanzees 
(Supplementary Information). Indeed, segregating sites across 
putative chimpanzee-like windows in bonobos do not show a dif-
ferent topology, suggesting that this analysis might be confounded 
by other factors; for example, high-frequency bonobo-like frag-
ments in chimpanzees (Supplementary Information). Furthermore, 
we find 3.5–5.0% of windows to be unexpectedly similar between 
the central and western chimpanzee populations (Supplementary  
Fig. 3), which might be the result of genetic exchange between  
these subspecies, in agreement with previous results18,19,21,27,34.

Archaic admixture in bonobos. We then tested these populations 
for a signature of archaic introgression from an unknown source 
outside the known tree. Following the methodology developed to 
identify archaic fragments in human genomes5,7, we determined 
outlier windows with unexpectedly high S*. We used a simplifi-
cation of the SFS-based demographic model with single pulses of 
migration between chimpanzees and bonobos as the null model for 
the extant Pan history (Methods). This model was used to simu-
late the expected distribution of S* (Supplementary Information) 
and to detect windows in which S* deviates from expectation when 
analysing the data with each of the two reference populations, 
given the respective numbers of segregating sites. We find that 
~1% of windows in the bonobo genomes behave as outliers in S* 
(Supplementary Fig. 3), but not in any of the chimpanzee popula-
tions, indicating a signature of putative archaic admixture.

We compared the pairwise SNV differences between individu-
als in random regions and putative archaic regions (that is, outlier 
S* regions in bonobos). These should correlate across all individual 
comparisons across all populations if systematic features (for exam-
ple, higher mutation rates) caused the signal. However, we found 
that the differences between any bonobo and any chimpanzee are 
elevated by 1.94-fold in putative archaic introgressed windows in 
bonobos, while the numbers of pairwise SNV differences between 
chimpanzees are similar between these same test and random 
regions (Fig. 2a). We conclude that these regions show random 
variation within chimpanzees, but an increased difference between 
chimpanzees and bonobos. The pairwise SNV differences between 
the putative introgressed windows in the test bonobo and other 
bonobo individuals are elevated by 37% when compared with ran-
dom regions. As expected, segregating sites in these windows form 
a longer branch in a phylogenetic tree (Fig. 1c and Supplementary 
Figs. 13 and 14) and explain ~60% more of the variance in a PCA 
(Fig. 2b–d). Furthermore, bonobos start to separate from each 
other in principal component 7 (1.63% of the variance), which 
is not observed for random regions up to principal component 
20 (Supplementary Fig. 15). Even though these windows seem to 
strongly deviate from the overall species divergence, the difference 
between bonobo individuals is not as pronounced, consistent with 

genetic drift after an ancient gene flow event. Haplotype networks 
of these windows typically show a large distance between bonobos 
and chimpanzees that is often similar to the distance between both 
and modern humans (Supplementary Fig. 16), but we also find  
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Fig. 1 | Trees of putatively introgressed fragments. a–c, Neighbour-
joining trees drawn to the same scale. a, Random fragments across the 
genome, representing the average phylogeny. b, Windows with bonobo-like 
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putative archaic introgression in a specific bonobo individual (Hortense).
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segregating haplotypes where most bonobos form a cluster, while 
few individuals show a distance larger than that of the bonobo clus-
ter to chimpanzees (Fig. 2e).

To compare demographic models and infer parameters, we 
used two approaches: (1) SFS-based modelling; and (2) approxi-
mate Bayesian computation (ABC) with neural networks based 
on genome-wide statistics (Methods). The ABC approach aims to 
use the underlying window-based data and linkage disequilibrium 
information from all high-coverage genome sequences, and hence 
complements SFS-based analyses. As summary statistics, the mean 
values and standard deviations of the number of segregating sites, 
the pairwise S* statistic and the percentage of outlier windows were 
used (Supplementary Table 5). The topology of the tree was inferred 
with the SFS-based model, and parameters for past and current pop-
ulation sizes as well as migration rates were randomly sampled, while 
divergence times were fixed (Methods). The ABC-based demo-
graphic inference without archaic gene flow provided estimates very 
similar to the SFS-based model, notably including support for gene 
flow between the extant Pan populations (Supplementary Table 4). 
We used this demographic model as a refined null model to recalcu-
late the generalized linear model of expected S* distributions. Again, 
simulations under this model could not recover the excess of archaic 
outliers found in the bonobo genomes (Supplementary Table 4 and 
Supplementary Figs. 17 and 18).

We then used ABC-based modelling to infer the demographic 
parameters of a model with archaic gene flow. First, we inferred 
the population parameters of all populations. In a second step, we 
refined the inference for bonobo-specific parameters, together with 
the amount and time of archaic gene flow, while fixing the other 
parameters and assuming a fixed archaic population divergence at 
3.5 Ma. Finally, we also inferred the divergence of the archaic popu-
lation (Supplementary Fig. 1 and Supplementary Information). 
The resulting fine-tuned estimates indicate that bonobos received 
0.9–4.2% from an unknown archaic population (Fig. 3). Simulations 
performed under this model can replicate the excess of outlier 
windows observed in the real data, while simulations without this 
gene flow cannot replicate this pattern (Supplementary Fig. 19). 
An ABC-based model selection test shows the largest support for 
the fine-tuned model with archaic gene flow (Fig. 4a; posterior 
probability = 0.98; Bayes factor > 60) and low levels of misclas-
sification (<0.001%; Supplementary Fig. 20). Applying this ABC-
based approach to the other chimpanzee populations (eastern 
and Nigeria–Cameroon chimpanzees) generally confirms these 
observations, without evidence for additional gene flow events 
(Supplementary Information). However, we note that the methods 
applied here might not be sensitive enough to discover gene flow 
events to a much smaller extent.

Historical population structure in bonobos after the split from 
chimpanzees is unlikely to cause signatures as observed here. In 
such a scenario, some bonobo individuals would appear more 
closely related to chimpanzees. Here, we observe haplotypes where 
all bonobos appear equally distinct from either all chimpanzees or 
all chimpanzees and other bonobos. The scenario of gene flow sug-
gested here might resemble population structure before the split of 
chimpanzees and bonobos, with subsequent isolation of only the 
chimpanzee lineage. This is not supported by the models of popula-
tion history inferred here, and seems unlikely in the biogeographi-
cal context of the separation of the Pan clade22–24. The SFS-based 
modelling of archaic gene flow (Supplementary Table 2) also sug-
gests that a model with archaic gene flow of 0.03–6.87% (95% con-
fidence interval (CI)) has a higher likelihood; hence, it provides a 
better fit to the data than models without such gene flow, or with 
ancient substructure of the ancestral bonobo population (Fig. 4b). 
Finally, the signature is not driven by possible confounding factors, 
such as differences in transitions or transversions, or copy number 
variants (Supplementary Information).
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Alternative inference of gene flow. Since S* relies on the demo-
graphic model, previous assumptions on the population history 
might influence the results. To confirm our observations, we used 
a recently developed method for detecting introgression without 
assumptions about the demographic history26. This method works 
in the absence of ancient genomes, although in humans the avail-
able ancient genomes were used to confirm the robustness of this 
method. This hidden Markov model (henceforth termed ‘Skov 
HMM’) detects unexpected densities of private sites in small seg-
ments of 1,000 base pairs (bp) in a given individual (Methods and 
Supplementary Information). When applying this method in a set-
ting without gene flow, this results in significantly lower likelihood 
than in a setting with one gene flow event (Fig. 4c; P = 0.9 × 10−5, 
Wilcoxon rank test). This supports the existence of two distinct 
classes of genomic regions in bonobos, one of which represents a 
Pan-like state, and a smaller fraction of the genome being more 
divergent. After decoding26 and filtering archaic regions for poste-
rior probabilities >0.9, we identify 74.2–107.1 megabase pairs (Mbp) 
of archaic fragments for the individual genomes (2.6–3.7% per  
individual, covering 4.8% of the genome in total) (Supplementary 
Table 9 and Supplementary Fig. 25). We call 30% more archaic frag-
ments when using only western chimpanzees as a reference panel, 
possibly because gene flow between non-western chimpanzees and 
bonobos21 interferes with this signal (Fig. 3).

Interestingly, we find that on average 60% of the significant 
regions in bonobos inferred using the S* method overlap with the 
decoded Skov HMM regions (Supplementary Table 12). This is 
only 15% lower than in modern humans26, where archaic genomes 
were available and used for validation. Thus, we conclude that this 
overlap reflects similar signatures of archaic gene flow in our data 
for bonobos, detected by both methods. The introgressed segments 
are short (mean: 12 kilobase pairs (kbp)), in agreement with an old 
gene flow event. Simulations suggest that the majority of short seg-
ments might not be detected here (Supplementary Information). 
Indeed, the mean length of correctly detected simulated fragments 
is ~17 kbp, but the mean length of missed archaic fragments is only 
~9 kbp. Still, 85.8% (95% CI: 80.4–91.2%) of the detected segments 
are correctly inferred, and for simulations under a model with-
out gene flow we do not detect false archaic segments with poste-
rior probabilities >0.9. Thus, our observations are only replicated 
by simulations under a model with archaic gene flow, although a 
smaller difference of the divergence times, together with an older 
introgression age, will decrease both the precision and sensitivity 
compared with Neandertal introgression in modern humans.

An old event from an early-diverging lineage. We estimate a 
migration pulse at a time of 377–637 thousand years ago (ka) (95% 
credible interval; Fig. 3 and Supplementary Table 4) in the fine-
tuned ABC-based model using S* (Supplementary Information), 
which agrees well with an introgression time at 367–407 ka using 
the length distribution of introgressed fragments with the Skov 
HMM. We note that this model infers a single migration pulse to 
summarize the observations, while a longer migration period or 
several admixture pulses are possible scenarios as well. Additionally, 
SFS-based modelling suggests wide CIs, with an admixture event of 
0.03–6.87% (95% CI) occurring at 466–1,627 ka (95% CI); hence, 
the above admixture times might be a lower-bound estimate. The 
split time of the archaic population is inferred at 3.3 Ma (95% cred-
ible interval: 2.89–3.75 Ma) using ABC modelling and 2.45–3.7 Ma 
(95% CI) using the SFS-based method. The coalescence time of the 
archaic fraction using the Skov HMM is inferred at 5.01–5.36 Ma 
(95% CI; Supplementary Table 8), which, as expected, is older than 
the actual population divergence time26. When applying the Skov 
HMM to data simulated under the ABC-based demographic model 
with a 3.3 Ma simulated divergence time, we obtain a raw emis-
sion value of 4.98 Ma. When correcting the coalescence time for 

the Skov HMM by a factor of 1.509, based on these simulations, 
the divergence time of ~3.32–3.55 Ma (95% CI) is well contained 
within the ABC- and SFS-based inferences. This tendency of higher 
time estimates is consistent with observations in humans, where the 
Skov HMM yields estimates of 853–984 ka for the coalescence with 
Neandertals, compared with 484–640 ka divergence times10,35. We 
note that these divergence times would be scaled to lower values 
under the assumption of a faster mutation rate in chimpanzees, as 
has been suggested recently36.

Furthermore, the estimated age37 of S* SNVs in the significant 
windows shows an increase between 2.0 and 3.5 Myr (Fig. 2f), 
which is unusual compared with random regions of the genome 
(P < 2.2 × 10−16, Wilcoxon rank test). In conclusion, a divergence of 
the archaic population beyond 3 Ma seems well supported, with a 
population split time between bonobos and chimpanzees of prob-
ably not more than 2 Ma21,38,39 (Fig. 3). We note that this divergence 
time might be slightly overestimated due to archaic gene flow. 
Interestingly, fragments inferred using both methods overlap with 
regions where bonobos fall outside the chimpanzee variation in 
a previous test for external regions on the chimpanzee lineage38. 
Since some of these regions might be the result of archaic admix-
ture in bonobos rather than selection in chimpanzees, this might 
explain the unexpected absence of protein-coding genes in many 
of these regions38.
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Landscape of introgression across the genome. In total, only ~3% 
of the autosomes shows a signature of archaic introgression. This 
partial archaic Pan genome is not evenly distributed across the chro-
mosomes, with many regions carrying introgressed haplotypes in 
several or all individuals, while other regions are depleted (Fig. 5).  
Even though the archaic ghost population and the ancestral popula-
tion of bonobos must have been able to produce fertile offspring, 
local incompatibilities may have led to regions of depleted intro-
gression40. When applying S* and the Skov HMM to the X chromo-
some (Supplementary Information), we find an eightfold reduction 
of archaic ancestry (Fig. 5). In humans, this chromosome shows a 
fivefold reduction for Neandertal introgression13, suggesting a bar-
rier to gene flow between populations both within the clades of 
Homo10,13 and Pan21, possibly due to recurrent selective sweeps41. 

We screened the autosomes for regions of reduced archaic ancestry 
(Supplementary Table 13), finding the largest proportions of puta-
tive introgression deserts in chromosomes 1, 17 and 19 (Fig. 5),  
among which chromosome 17 is known to carry the smallest 
proportion of introgression from archaic hominins into modern 
humans42. One of the largest depleted regions (chromosome 1; 
109–125 Mbp) overlaps with a large archaic introgression desert 
in modern humans7,13 (Fig. 5). Since in this region deficiencies in 
the gene CSF1 lead to pregnancy loss in humans, possibly by foetal 
rejection43, we speculate that a derived non-synonymous change in 
this gene on the bonobo lineage44 might have had functional conse-
quences leading to a rejection of archaic introgression. We find no 
protein-coding changes, but regulatory variants at high frequency 
on both the modern human and archaic lineages, respectively9,45 

a

No 
ar

ch
aic

 flo
w

Anc
es

tra
l s

ub
str

uc
tu

re

Arc
ha

ic 
ad

m
ixt

ur
e

–6,200

–6,000

–5,800

–5,600

–5,400

–5,200

–5,000

b

All

0 1 2
–3,300,000

–3,250,000

–3,200,000

–3,150,000

–3,100,000

–3,050,000

c Central

0 1 2
–3,350,000

–3,300,000

–3,250,000

–3,200,000

–3,150,000

–3,100,000

–3,050,000

Western

0 1 2
–3,550,000

–3,500,000

–3,450,000

–3,400,000

–3,350,000

–3,300,000

–3,250,000

–3,200,000

No 
AA (S

FS)

No 
AA (A

BC)

ABC w
ith

 A
A

Adju
ste

d 
ABC w

ith
 A

A
0

0.2

0.4

0.6

P
os

te
rio

r 
pr

ob
ab

ili
ty

Lo
g 

lik
el

ih
oo

d

Lo
g 

lik
el

ih
oo

d

Lo
g 

lik
el

ih
oo

d

Δ
lik

el
ih

oo
d

0.8

1.0

Fig. 4 | Posterior values of the models used. a, Posterior probabilities of 100 replicate tests for the ABC model selection test63,67 for the simplified SFS-based 
demographic model, the ABC-based model without archaic admixture (AA) in bonobos, the ABC-based model with archaic admixture in bonobos and the 
adjusted ABC-based model with archaic admixture in bonobos. b, Differences between the likelihood of a constrained tree and the maximum-likelihood 
tree (Δlikelihood (log10)) of 100 replicates for the SFS-based model21,33 with and without archaic admixture, and with ancient substructure in bonobos 
(Methods). c, log likelihoods for the Skov HMM26 for ten bonobo individuals, assuming no gene flow (0), or one (1) or two gene flow events (2), using either 
all chimpanzees (left) or only central (middle) or western chimpanzees (right) as reference panels. In a–c, the central black lines are median values, the box 
edges represent upper and lower quartiles, and the whiskers represent the most extreme data point within 1.5 times the interquartile range from the box.
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(Supplementary Information). However, recurrent hybrid incom-
patibilities between populations arose rarely in these lineages.

Archaic fragments might be functionally relevant (Supplementary 
Information). We find an enrichment for genome-wide asso-
ciation study traits related to behavioural and sleep phenotypes 
(Supplementary Table 16), suggesting a potential role of introgres-
sion for unique behavioural features of bonobos46, as well as ‘iron 
biomarker measurement’ in blood. Interestingly, a protein-coding 
change44 in the gene encoding for erythrocyte membrane protein 
42 (EPB42) falls within a known signature of positive selection in 
bonobos47. This gene appears to be downregulated in bonobos in 
the brain, cerebellum and kidney (adjusted P < 0.05)48, and is the 
only putatively introgressed gene we find differentially expressed 
in as many as three tissues (Supplementary Table 20). This posi-
tion is conserved across other mammals and located only three 
amino acids downstream of a missense mutation in humans causing  

haemolytic anaemia49. However, it is unclear how this mutation 
relates to past adaptations, considering that haematology values of 
captive present-day bonobos appear unremarkable50. Immune adap-
tation might be a possible explanation, similar to the well-described 
malaria-protective mutation in human haemoglobin, which causes 
sickle cell anaemia51.

It is known that the retention of introgression in immunity-
related genes conferred benefits32,52, and we find that within the lon-
gest regions (Supplementary Table 7), SERPINA11 and SERPINA9 
play a role in adaptive immunity53 and carry protein-coding changes 
in bonobos44. Among other genes possibly involved in the immune 
response (Supplementary Information), the gene VNN2, encoding 
for a protein with a role in neutrophil migration54, carries four pro-
tein-coding changes older than 2 Ma in bonobos (Supplementary 
Table 21). Introgression might have also played a role in ancient 
adaptation to food resources; for example, through protein-altering  
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changes in the alcohol dehydrogenase-encoding gene ADH4 
(Supplementary Information). The functional consequences of 
these differences and their biological relevance need to be explored 
in future studies. Finally, 2 of the regions larger than 100 kbp (chro-
mosome 10 (76,140,000–76,300,000 bp) with the ADK gene and 
chromosome 3 (144,450,000–144,580,000) without protein-coding 
genes) overlap with genome-wide outliers (top 0.5%) of the popu-
lation differentiation statistic FST (Methods) and might have been 
under selection.

Discussion
A bonobo founder population probably diverged from chimpanzees 
<2 Ma by crossing the Congo River, followed by population retrac-
tions and expansions probably due to climatic changes24. It has been 
suggested that the deepest mitochondrial split dates to ~0.95 Ma24, 
and bonobos spread westwards afterwards. It seems possible that 
bonobos encountered a distinct branch of the Pan clade during their 
expansion, with hybridization leaving the genomic traces discussed 
here. A separation of ancestral populations with the Congo River for-
mation ~3.5 Ma or during later dry periods23 may provide the context 
for an early population split from the Pan clade, which our results 
suggest has hybridized with the ancestral bonobo population (Fig. 3).  
It remains unclear how well the genetic diversity of bonobos is 
reflected by the available genomes, but mitochondrial data suggest 
that more genomic diversity may be found in the wild than is rep-
resented here24. Since it might well be that no ape fossils with pre-
served ancient DNA are to be found in the Congo Basin, excavating 
parts of extinct ape genomes from present-day variation could be 
the only strategy with which to explore these long-gone populations.  
By increasing the sample size for bonobos and other great apes using 
non-invasive samples55, larger fractions of ‘genomic fossils’ may be 
uncovered, potentially providing more insights into the biology of 
extinct apes, as well as adaptation and incompatibilities in hominins.

Methods
Data and ancestral alleles. We used the genotypes of the individuals from a 
previous study21, mapped to the human reference genome (hg19), using the 22 
autosomes and the X chromosome. The data consist of genotype calls for 10 
bonobo, 18 central chimpanzee, 20 eastern chimpanzee, 10 Nigeria–Cameroon 
chimpanzee and 11 western chimpanzee individuals (Supplementary Table 1).  
To avoid biases from the use of the chimpanzee reference genome in the ancestral 
allele inference provided by Ensembl56, we used the macaque genome as an 
outgroup to infer the ancestral state. We lifted over the rhesus macaque reference 
genome (rheMac3) to the human genome coordinates using bedtools57 and 
rtracklayer58 in the R environment59. Finally, we modified scripts from the package 
freezing-archer60 to create a custom ancestral binary genome file in which any site 
that is segregating in the dataset of the 69 individuals or different from hg19 is 
replaced by the macaque reference allele. This package contains scripts used in a 
previous study on archaic admixture in humans7. We used the R environment and 
the packages GenomicRanges61 and bedr62 for further data processing.

Implementation of S*. We used the package freezing-archer, which was also 
used for S* implementation in previous studies on archaic introgression in 
modern humans5,7. We calculated S* on a genome-wide scale with a window 
size of 40 kilobase pairs (kbp) and a window step of 30 kbp, for 11 western and 
18 central chimpanzees and 10 bonobos, in windows where 3/4 of sites were 
considered ‘callable’ (that is, genotypes were retrieved in all individuals, as 
described by de Manuel et al.21), and at least 30 segregating sites were observed 
across all individuals considered. We calculated the statistic in a pairwise manner, 
testing each individual of the test population independently, with one population 
from each of the two other populations used as reference panels (Supplementary 
Information). The S* for a given reference population was used to predict the S* 
for the other reference population to detect outlier regions in a generalized linear 
model using the R package mgcv63. The normalized deviation from expectation 
for S* in each window was used to detect windows in which an individual shows 
unusually large S* for one reference panel but small S* for the other reference panel 
(outside the 95% CI). We used null distributions of S* from demographic models 
without gene flow (described below) and simulated data as described previously5 
to obtain a generalized linear model given the number of segregating sites. Briefly, 
we simulated64 20,000 windows of 40 kbp for predefined numbers of segregating 
sites from 25–700 in steps of 5, and obtained a generalized linear model, analogous 
to previous work7. Windows in which the empirical S* was outside the 99% CI 

for 2 different reference populations were considered putatively introgressed 
from a source population unrelated to the reference populations (Supplementary 
Information). The longest regions were defined as consecutive overlapping 
windows in at least one individual. Regions of at least 5 Mbp in which at most 1 
significant window in at most 1 individual was found, and where at least 1/3 of the 
windows contained data, were defined as putatively depleted regions. We note that 
the number of only ten bonobo individuals is a limitation of our dataset.

Statistical modelling. We performed demographic modelling and inference using 
two approaches: (1) SFS-based composite likelihoods; and (2) ABC based on S* 
statistics. These approaches are complementary given that in the SFS all sites are 
assumed to be independent and linkage disequilibrium information is discarded, 
while the ABC-based analysis is able to use linkage disequilibrium information 
captured by the S* statistics to infer introgression. All demographic estimates were 
done assuming a mutation rate of 1.2 × 10−8 (ref. 65) and were rescaled into time  
(in years) assuming a generation time of 25 years66.

We used the joint 3D-SFS of bonobo and western and central chimpanzees 
following the approach described in detail previously21 to infer effective population 
sizes, split times and migration rates (Supplementary Information). The SFS was 
built based on 1,084 blocks of 1 Mbp on the autosomes21, resulting in an SFS with 
a total of 763,965,527 sites without missing data, of which 4,839,432 were biallelic 
single-nucleotide polymorphisms (SNPs). The settings to run the fastsimcoal233 
analyses were the same as described previously21. We further estimated the 
likelihood of models of increasing complexity (Supplementary Information) to test 
whether models with archaic gene flow between an unsampled ghost population 
and bonobo fitted the SFS data better than alternative models (without ghost 
population or ancestral population substructure in bonobos).

We performed modelling based on ABC67 with neural networks. The initial 
null model for S* was adjusted ad hoc to match the distribution of segregating 
sites in 40-kbp windows (Supplementary Information). For parameter estimates, 
we simulated 333 windows of 250 kbp for each random combination of effective 
population sizes and migration rates (Supplementary Information) as input, and 
used the numbers and standard deviations of segregating sites in 40-kbp windows, 
S* values and proportions of outliers as summary statistics (Supplementary Table 5).  
Initial inferences were based on 45,000 simulations with a tolerance threshold 
of 0.01 to infer the best fit for effective population sizes and migration rates 
(Supplementary Table 4) without archaic gene flow, which was then defined as the 
new null model (ABC-based null model). The best fit for a model with archaic 
gene flow was also estimated from 90,000 simulations and a tolerance of 0.001. 
Finally, fine-tuned inferences for archaic divergence time and migration rates were 
obtained with the same parameters (Supplementary Fig. 1). When replicating the 
inference of demographic parameters using ABC for the model without archaic 
gene flow using the same procedure, we obtain very similar values for effective 
population sizes and migration rates (Supplementary Table 4). ABC modelling 
and S* calculations were also applied to the genomes of 20 eastern and 10 Nigeria–
Cameroon chimpanzees, with ~10,000 simulations for each (tolerance: 0.05). 
The ABC model selection test was performed on the adjusted SFS-based model, 
the best ABC-based model without gene flow, the best ABC-based model with 
archaic gene flow and a fixed archaic divergence time of 3.5 Ma, and the adjusted 
ABC-based model with archaic gene flow. We obtained ~6,200 simulations of 333 
fragments of 250 kbp, and applied the neural networks method with a tolerance 
threshold of 0.05.

Implementation of the Skov HMM. We used the Skov HMM on private sites in a 
given individual26 (Supplementary Information), implemented in the introgression-
detection package. Briefly, we calculated the numbers of callable sites in 1-kbp 
windows, SNV density and numbers of private variants in each individual for the 
22 autosomal chromosomes and the X chromosome. We applied settings26 without 
gene flow, or with one or two gene flow events. Starting probabilities were set to 
(0.95, 0.05) and (0.95, 0.035, 0.015) for one and two gene flow events, respectively. 
The transition matrices were ((0.999, 0.001),(0.01, 0.99)) and ((0.998, 0.001, 
0.0001),(0.0195, 0.98, 0.0005),(0.012, 0.012, 0.975)), and the emission matrices were 
(0.05, 1.0) and (0.1, 0.7, 1.5), respectively. We tested the chimpanzee and bonobo 
individuals with all individuals from the respective other species as a reference 
panel, and bonobos compared with western and central chimpanzees separately. 
The decoding was performed as provided by the package, at a probability cutoff of 
0.9 and with a minimum number of 5 private sites to call introgressed fragments. 
For time estimates, we used a mutation rate of 1.2 × 10−8 mutations generation−1 bp−1, 
and a constant recombination rate of 0.7 × 10−8 generation−1 bp−1, considering 
lower recombination rates in Pan species than humans68. Example conversions are 
shown in Supplementary Table 10. Simulations were performed using msprime69 
under the fine-tuned ABC-based model using S* (see above). The coalescence 
time of the archaic fraction to all chimpanzees is inferred at 5.01–5.36 Ma. Since 
this coalescence time is older than the split time and dependent on the effective 
population size, it may serve as a proxy for the divergence time, but it is not 
identical to the split time. When applying the Skov HMM to simulated data with 
a divergence time of 3.3 Ma between species, the estimate from the emission 
probability is 4.98 Ma. We suggest that this coalescence time can be converted to 
divergence time through a factor of 1.509.
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Other analyses. Pairwise differences of SNVs were calculated with a similar 
approach as used in a previous study8, between all individuals in a pairwise fashion 
across all significant windows, and for the same number of randomly sampled 
regions. Analyses of SNV differences, phylogenetic trees70, PCAs71 and significance 
tests were performed in the R environment59 (Supplementary Information). 
Haplotype networks from all SNPs in the archaic fragments were built using 
the package pegas72. The results from the program ARGweaver37 as applied and 
described previously21 were re-analysed, and allele age was estimated with ‘arg-
summarize –A’. Information on functional changes was retrieved from previous 
studies on public data44,45 (Supplementary Information), and an enrichment test 
for genome-wide association study traits was performed as described elsewhere44,73 
(Supplementary Information). We mapped and quantified chimpanzee and 
bonobo transcriptome data48 using the reference genome hg19 (refs. 74,75), and 
tested for differential gene expression between the two species using DESeq2 
(ref. 76) (Supplementary Table 20). We calculated the genome-wide distribution 
of FST between bonobos and chimpanzees in windows of 40 kbp, with 10-kbp 
steps, using PopGenome77. Phylogenetic trees were drawn using phangorn70 with 
Kimura’s distance78. More details and additional analyses are described in the 
Supplementary Information.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Sequence data from a previous study are publicly available under the accession 
code PRJEB15086 at the European Nucleotide Archive. Genotype data are available 
at http://biologiaevolutiva.org/tmarques/data/. Data pertaining to the results are in 
the Supplementary Information.
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