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ABSTRACT The role of fallback foods in shaping pri-
mate ranging, socioecology, and morphology has recently
become a topic of particular interest to biological anthro-
pologists. Although the use of fallback resources has been
noted in the ecological and primatological literature for a
number of decades, few attempts have been made to
define fallback foods or to explore the utility of this con-

cept for primate evolutionary biologists and ecologists. As
a preface to this special issue of the American Journal of
Physical Anthropology devoted to the topic of fallback
foods in primate ecology and evolution, we discuss the de-
velopment and use of the fallback concept and highlight
its importance in primatology and paleoanthropology.
AmJPhysAnthropol 140:599–602, 2009. VVC 2009Wiley-Liss, Inc.

‘‘Fallback foods’’ are foods which people and other ani-
mals utilize when preferred foods are unavailable (Mar-
shall and Wrangham, 2007). They have been discussed
in studies of modern humans (e.g., Ellis, 1982; Cutler,
1986; Bardhan, 1996), and have received particular
attention in the fields of primatology and paleoanthro-
pology. This is due to the recognition that fallback foods
may have played a major role in shaping human ecology
and evolution as well as the ecology and evolution of our
primate relatives (Lambert et al., 2004; Rogers et al., 2004;
Laden and Wrangham, 2005; Cuozzo and Sauther, 2006;
Grine et al., 2006; Hanya et al., 2006; Hernandez-Aguilar
et al., 2007; Marshall and Wrangham, 2007; Xiang et al.,
2007; Ungar et al., 2008; Vogel et al., 2008).
Despite the recent introduction of fallback foods into

the primatological lexicon, there has been little consen-
sus as to how they should be defined and how inquiry
into their importance in primate evolution should be
operationalized. This was the primary reason behind a
symposium organized for the 77th meeting of the Ameri-
can Association of Physical Anthropologists held in
Columbus, Ohio in April of 2008. The symposium had
three objectives: define fallback foods, discuss methods
for identifying and measuring fallback foods and fallback
dietary strategies, and explore the role of fallback foods
in the ecology and evolution of primates through the pre-
sentation of recent field studies. With these objectives in
mind, the symposium was divided into three sections:
theoretical context, methods for evaluating the role of
fallback foods in the evolution of living and fossil taxa,
and case studies in extant primates. This special edition
of the American Journal of Physical Anthropology
(AJPA) maintains this organizational structure in pre-
senting the resulting papers from the 2008 symposium.
As with more traditional submissions to AJPA, all
papers appearing here have been peer-reviewed. In this
brief preface, we introduce the fallback concept, explore

its history including its introduction to primatology and
paleoanthropology, and discuss current areas of research
within these fields. We do not review or discuss the
articles that follow. This is expertly done by Joanna
Lambert at the conclusion of this issue.

THE ECOLOGICAL AND EVOLUTIONARY
IMPORTANCE OF FALLBACK FOODS

The ecological and evolutionary importance of fallback
foods was made clear in studies of Darwin’s finches con-
ducted by Peter Grant and his team on the Galapagos
Islands. In 1977, a drought on the island of Daphne
Major resulted in a significant decline in the abundance
of small seeds, the most frequently utilized food of Dar-
win’s medium-sized ground finch, Geospiza fortis. During
the drought, large seeds such as those of Tribulus cis-
toides declined in abundance less rapidly than did small
seeds, but the large seeds could only be opened by the
larger-beaked members of G. fortis. This resulted in the
preferential survival of large-beaked individuals, and
because beak size is largely heritable, this translated
into a rapid evolutionary increase in the average beak
size of G. fortis (Boag and Grant, 1981).
For G. fortis, the seeds of T. cistoides could be labeled

as a fallback food. They were virtually ignored in years
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before the drought but became a critical resource when
smaller seeds disappeared. Because only individuals
with large beaks could take advantage of this fallback
food, it had a major impact on the morphology of the
species in subsequent generations. Interestingly, a
drought in 2003 and 2004 had the opposite effect on the
beak morphology of G. fortis. By 2003, the giant-beaked
ground finch, G. magnirostris, had established itself on
the island and regularly consumed the large seeds of
T. cistoides, thus excluding them as a fallback food for
G. fortis. The result was increased survivability within
G. fortis of smaller-beaked individuals. It is believed
that these smaller-beaked members of G. fortis were
able to survive by taking advantage of the very small
seeds of Sesuvium edmonstonei and Tiquilia fusca,
although there are no feeding observations to demon-
strate conclusively that this was the case (Grant and
Grant, 2006). Therefore, while G. fortis was able to uti-
lize large T. cistoides seeds as a fallback food in 1977,
competitive exclusion appears to have led to their exploi-
tation of alternative, and possibly less preferred, fallback
foods in 2003 and 2004.
The ecological and evolutionary importance of fallback

foods was further emphasized in a mathematical model
developed by Robinson and Wilson (1998) as a solution
to Liem’s paradox. Liem’s paradox is the observation
that species with seemingly specialized phenotypes can
sometimes behave as ecological generalists. For instance,
numerous cichlid fish species with elaborate morphologi-
cal feeding specializations frequently feed on prey items
for which their specializations are seemingly not
adapted. In one specific example, African cichlids speci-
alized for eating the scales of other fish are often found
feeding on algae, zooplankton, or aquatic insects. This
discovery initially led researchers to doubt the role of
feeding competition as a key diversifying force in ecology
and evolution. Karel Liem, a prominent ichthyologist
and evolutionary biologist, argued that the morphologi-
cal specializations of these cichlids are not likely to be
adaptive but instead the product of phylogenetic or de-
velopmental constraints that are able to persist because
they are adaptively neutral (Liem, 1990). The Robinson
and Wilson (1998) model presents an alternative solution
to this paradox by revealing that morphological special-
izations for fallback foods may be niche broadening char-
acters that also maintain and encourage community di-
versity if they do not inhibit the ability to feed on more
abundant, nonfallback foods. This model is based on
optimal foraging theory, which states that organisms for-
age in such a way as to maximize their energy intake
per unit time (MacArthur and Pianka, 1966). Under this
theory, foods that are abundant, high in calories, and/or
easily accessed and processed should be preferred by all
members of the community. When these preferred foods
become scarce, the community can continue to live in
sympatry and remain diverse if the species partition the
available resource base by turning to less desirable, fall-
back resources. These resources are often difficult to ac-
quire or process and may therefore require ‘‘specialized’’
morphological features for their exploitation. At the
same time, the less challenging and seasonally abundant
resources can continue to be exploited by an array of
morphological complexes. Robinson and Wilson’s (1998)
study emphasized the often mechanically-demanding na-
ture of fallback foods while also providing a theoretical
basis for the potentially influential role of fallback foods
on morphology.

FALLBACK FOODS VERSUS
KEYSTONE RESOURCES

Some researchers, intentionally or not, often use the
terms ‘‘fallback’’ and ‘‘keystone’’ resources interchange-
ably (Tutin et al., 1997; White, 1998; Yamakoshi 1998;
Ungar, 2004). A point of clarification must be made
because, as Marshall and Wrangham (2007) pointed out,
these terms do not mean precisely the same thing. A
keystone resource is one that plays a critical role in an
ecological community. The concept was first introduced
by Robert Paine in 1969 to describe the importance of
certain predator species in intertidal and coral reef com-
munities. He described the importance of these species
in maintaining ecological stability, calling them the ‘‘key-
stone of the community’s structure’’ (Paine, 1969, p. 92).
Following Paine’s publication, the term was widely
adopted, particularly by conservation biologists, and
became applied to species in many different taxonomic
groups and at many different trophic levels (Mills et al.,
1993). Ultimately, the term was extended to resources
that are critical to the survival of many species in a
community, even though the resource may be rare or
narrowly distributed (Primack, 1993).
Even with the broadening of the keystone concept, the

central tenant of its definition has always been the dis-
proportionately large effect that the keystone species or
resource has on maintaining the community (Terborgh,
1986; Power et al., 1996; Peres, 2000). Removing the
keystone causes the community to collapse. Fallback
foods need not have such broad importance. It is possible
that a fallback food is only exploited by a single species,
and the absence of this food in the environment may or
may not be detrimental to the consumer, depending in
part on whether other fallback foods can be exploited in
its place.

FALLBACK FOODS IN PRIMATOLOGY AND
PALEOANTHROPOLOGY

The fallback food concept appeared relatively early in
primatology. It seems to have been introduced by Hladik
(1973) who was commenting on chimpanzees’ increased
consumption of leaves and stems during periods of low
fruit abundance (Tutin et al., 1985). Although the term
‘‘fallback food’’ does not seem to have been widely used
at this time, seasonal variation in primate diets quickly
became a regular part of primate feeding studies (e.g.,
Waser, 1975; Chivers, 1977; Fossey and Harcourt, 1977;
Hladik, 1977; Wrangham, 1977). These studies made it
clear that most primate diets shifted seasonally, even in
species living in ‘‘stable’’ tropical forests (Hladik, 1988).
In light of optimal foraging theory (MacArthur and
Pianka, 1966), researchers also recognized that certain
primate foods should be more ‘‘preferred’’ than others.
For example, in a study of the feeding behavior of Bor-
nean orangutans, Rodman (1977) discussed the differ-
ence between ‘‘preferred’’ and ‘‘less preferred’’ foods and
argued that bark was less preferred than fruit because it
has a lower energy yield and greater cost of procure-
ment. The combination of these two concepts, dietary
seasonality and the prioritization of food resources, led
to the understanding that many primates experience a
particular time of the year when preferred foods are in
short supply and that certain fallback foods can be criti-
cal for the survival of these populations (Leighton and
Leighton, 1983).
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Despite the recognized importance of these seasonally
critical resources, the use of the term ‘‘fallback food’’ still
did not become widespread until it made numerous
appearances in a series of publications on great ape feed-
ing behavior in the 1990s by Wrangham and colleagues
(Wrangham et al., 1991, 1996, 1998; Malenky and
Wrangham, 1994; Conklin-Brittain et al., 1998). These
papers stressed the chemical and nutritional significance
of fallback foods and did much to highlight their vital
role in primate diets as well as their possible effect on
primate social systems. The value of fallback foods was
further investigated by Altmann (1998) in a dietary
analysis of yearling baboons. Building again on optimal
foraging theory, Altmann (1998) argued that food prefer-
ence is a trade-off between the mean energy density of a
food and the rate at which that food can be harvested, and
he demonstrated that the low harvest or intake rate of
grass corms resulted in them only being eaten by baboons
during periods when more preferred foods were scarce.
Another influential study involving fallback foods was

that of Lambert et al. (2004) who proposed that the thick
tooth enamel of grey-cheeked mangabeys was the result
of their fallback diet of hard bark and seeds. This notion
that some foods, due to their physical, mechanical, or
chemical properties, can play a major selective role in
shaping morphological features had been previously
explored by Rosenberger and Kinzey (1976) in their dis-
cussion of Neotropical primate masticatory adaptations.
They noted that the morphology of many species reflected
a ‘‘critical function,’’ such as the processing of mechani-
cally-demanding foods. However, Lambert et al.’s (2004)
study implicated fallback foods as the agents of morpholog-
ical change and led both primatologists and paleoanthro-
pologists to think more critically about the selective agents
leading to particular trophic adaptations.
The idea of fallback foods influencing morphology has

recently been adopted by many paleoanthropologists
seeking to understand the dietary adaptations of early
hominins. For instance, Laden and Wrangham (2005),
building on the earlier work of Hatley and Kappelman
(1980), suggested that many of the derived masticatory
traits of early hominins could have been the adaptations
for the exploitation of plant underground storage organs
(USOs). USOs (bulbs, corms, roots, rhizomes, and tubers)
are geographically and temporally widespread resources
that can pose both ingestive and digestive challenges
(Dominy et al., 2008). Fallback foods have also been pro-
posed as a possible solution to unexpected dental micro-
wear patterns in early hominins. Although certain homi-
nin taxa appear to have been morphologically adapted to
eating fracture-resistant foods such as hard nuts or
seeds, there is little or no sign of these foods in the den-
tal microwear signal of these hominins. For example,
Grine et al. (2006) found little evidence of hard foods in
the microwear of Australopithecus (Praeanthropus) afar-
ensis, and perhaps even more surprisingly, Ungar et al.
(2008) found no evidence of hard object feeding in the
microwear of Paranthropus boisei, a species with large
jaws and teeth, thick tooth enamel, and anteriorly-posi-
tioned (and presumably large) chewing muscles. In each
case, the authors suggested that the consumption of frac-
ture-resistant fallback foods could have been the selec-
tive pressure that led to the ‘‘robust’’ masticatory mor-
phology of these hominins. The reasoning is that if the
consumption of these foods was a rare but critically im-
portant event, then the dental microwear signal would
not necessarily show evidence of these foods because

dental microwear only reveals evidence of items that
contacted the individual’s teeth in the last few days or
even hours before its death (Grine, 1986; Teaford and
Oyen, 1989). On the other hand, one could argue that
many individuals die during periods of food scarcity, and
because it is during these periods that fallback foods are
consumed, it is surprising that they would not be repre-
sented in the microwear profile of several individuals
from a species. Interestingly, if the authors of these
microwear studies are correct, then the case of P. boisei
fits the model proposed by Robinson and Wilson (1998)
to solve Liem’s paradox since their ‘‘specialized’’ mastica-
tory morphology would reflect adaptation to the use of
an infrequently selected and mechanically-challenging
food (Ungar et al., 2008).
As will become evident after reading the contributions

to this volume, fallback foods are an important topic of
study within both primatology and paleoanthropology.
They appear to play a role in the ecology and possibly
the evolution of all the major groups of primates. In
addition to their influence on morphology, they have
been implicated as possibly affecting group size and den-
sity (Matsumoto-Oda et al., 1998; Hanya et al., 2006),
home range (Hanya et al., 2006), habitat type (Laden
and Wrangham, 2005; Dominy et al., 2008), life history
(Cuozzo and Sauther, 2006), and even tool use (Yama-
koshi, 1998; Fox et al., 1999). Hopefully this volume will
serve as a good introduction to the importance of fall-
back foods, and will set the stage for much further
research into this topic.
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